Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/162519
Evaluation of an improved tool for non-invasive prediction of neonatal respiratory morbidity based on fully automated fetal lung ultrasound analysis
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
The objective of this study was to evaluate the performance of a new version of quantusFLM®, a software tool for prediction of neonatal respiratory morbidity (NRM) by ultrasound, which incorporates a fully automated fetal lung delineation based on Deep Learning techniques. A set of 790 fetal lung ultrasound images obtained at 24 + 0-38 + 6 weeks' gestation was evaluated. Perinatal outcomes and the occurrence of NRM were recorded. quantusFLM® version 3.0 was applied to all images to automatically delineate the fetal lung and predict NRM risk. The test was compared with the same technology but using a manual delineation of the fetal lung, and with a scenario where only gestational age was available. The software predicted NRM with a sensitivity, specificity, and positive and negative predictive value of 71.0%, 94.7%, 67.9%, and 95.4%, respectively, with an accuracy of 91.5%. The accuracy for predicting NRM obtained with the same texture analysis but using a manual delineation of the lung was 90.3%, and using only gestational age was 75.6%. To sum up, automated and non-invasive software predicted NRM with a performance similar to that reported for tests based on amniotic fluid analysis and much greater than that of gestational age alone.
Matèries
Matèries (anglès)
Citació
Citació
BURGOS ARTIZZU, Xavier p., PÉREZ MORENO, Álvaro, CORONADO GUTIÉRREZ, David, GRATACÓS SOLSONA, Eduard, PALACIO, Montse. Evaluation of an improved tool for non-invasive prediction of neonatal respiratory morbidity based on fully automated fetal lung ultrasound analysis. _Scientific Reports_. 2019. Vol. 9, núm. 1950. [consulta: 21 de gener de 2026]. ISSN: 2045-2322. [Disponible a: https://hdl.handle.net/2445/162519]