Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/193366

Abelian varieties with many endomorphisms and their absolutely simple factors

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We characterize the abelian varieties arising as absolutely simple factors of $\mathrm{GL}_2$-type varieties over a number field $k$. In order to obtain this result, we study a wider class of abelian varieties: the $k$ varieties $A / k$ satisfying that $\operatorname{End}_k^0(A)$ is a maximal subfield of $\operatorname{End}_{\bar{k}}^0(A)$. We call them Ribet-Pyle varieties over $k$. We see that every Ribet-Pyle variety over $k$ is isogenous over $\bar{k}$ to a power of an abelian $k$-variety and, conversely, that every abelian $k$-variety occurs as the absolutely simple factor of some Ribet-Pyle variety over $k$. We deduce from this correspondence a precise description of the absolutely simple factors of the varieties over $k$ of $\mathrm{GL}_2$-type.

Citació

Citació

GUITART MORALES, Xavier. Abelian varieties with many endomorphisms and their absolutely simple factors. _Revista Matematica Iberoamericana_. 2012. Vol. 28, núm. 2, pàgs. 591-601. [consulta: 15 de febrer de 2026]. ISSN: 0213-2230. [Disponible a: https://hdl.handle.net/2445/193366]

Exportar metadades

JSON - METS

Compartir registre