LLMs for explaining sets of counterfactual examples to final users

dc.contributor.advisorVitrià i Marca, Jordi
dc.contributor.authorFredes Cáceres, Arturo
dc.date.accessioned2024-09-16T07:16:10Z
dc.date.available2024-09-16T07:16:10Z
dc.date.issued2024-06-30
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2023-2024. Tutor: Jordi Vitrià i Marcaca
dc.description.abstract[en] Counterfactual examples have shown to be a promising method for explaining a machine learning model’s decisions, by providing the user with variants of its own data with small shifts to flip the outcome. When a user is presented with a single counterfactual, extracting conclusions from it is straightforward. Yet, this may not reflect the whole scope of possible actions the user can take, and furthermore, the example could be unfeasible. On the other hand, as we increase the number of counterfactuals, drawing conclusions from them becomes difficult for people who are not trained in data analytic thinking. The objective of this work is to evaluate the use of LLMs in producing clear explanations in plain language of these counterfactual examples for the end user. We propose a method to decompose the explanation generation problem into smaller, more manageable tasks to guide the LLM, drawing inspiration from studies on how humans create and communicate explanations. We carry out different experiments using a public dataset and propose a method of closed loop evaluation to assess the coherence of the final explanation with the counterfactuals as well as the quality of the content. Furthermore, an experiment with people is currently being done in order to evaluate the understanding and satisfaction of the users. This work has been submitted for review to the Human-Interpretable Artificial Intelligence (HI-AI) Workshop, held in conjunction with KDD 2024. The submission aims to contribute to the field by presenting findings that enhance the interpretability and understanding of ML systems. The review process is expected to provide insightful feedback that will further refine the methodologies and conclusions discussed in this thesis.ca
dc.format.extent41 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/215166
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Arturo Fredes Cáceres, 2024
dc.rightscodi: GPL (c) Arturo Fredes Cáceres, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationTractament del llenguatge natural (Informàtica)
dc.subject.classificationAlgorismes computacionals
dc.subject.classificationTreballs de fi de màster
dc.subject.otherMachine learning
dc.subject.otherNatural language processing (Computer science)
dc.subject.otherComputer algorithms
dc.subject.otherMaster's thesis
dc.titleLLMs for explaining sets of counterfactual examples to final usersca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
LMM-4-CFs-Explanation-main.zip
Mida:
19.84 MB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
tfm_fredes_caceres_arturo.pdf
Mida:
633.23 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria