Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/192887

A linear stochastic biharmonic heat equation: hitting probabilities

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Consider the linear stochastic biharmonic heat equation on a $d$-dimensional torus ( $d=1,2,3)$, driven by a space-time white noise and with periodic boundary conditions: $$ \left(\frac{\partial}{\partial t}+(-\Delta)^2\right) v(t, x)=\sigma \dot{W}(t, x),(t, x) \in(0, T] \times \mathbb{T}^d, $$ $v(0, x)=v_0(x)$. We find the canonical pseudo-distance corresponding to the random field solution, therefore the precise description of the anisotropies of the process. We see that for $d=2$, they include a $z\left(\log \frac{c}{z}\right)^{1 / 2}$ term. Consider $D$ independent copies of the random field solution to (0.1). Applying the criteria proved in Hinojosa-Calleja and Sanz-Solé (Stoch PDE Anal Comp 2021. https://doi.org/10.1007/s40072-021-001901), we establish upper and lower bounds for the probabilities that the path process hits bounded Borel sets.This yields results on the polarity of sets and on the Hausdorff dimension of the path process.

Citació

Citació

HINOJOSA CALLEJA, Adrián, SANZ-SOLÉ, Marta. A linear stochastic biharmonic heat equation: hitting probabilities. _Stochastics And Partial Differential Equations-Analysis And Computations_. 2022. Vol. 10, núm. 3, pàgs. 735-756. [consulta: 20 de gener de 2026]. ISSN: 2194-0401. [Disponible a: https://hdl.handle.net/2445/192887]

Exportar metadades

JSON - METS

Compartir registre