Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

dc.contributor.authorKhurshid, Hafsa
dc.contributor.authorLampen-Kelley, Paula
dc.contributor.authorIglesias, Òscar
dc.contributor.authorAlonso, Javier
dc.contributor.authorPhan, Manh-Huong
dc.contributor.authorSun, Cheng-Jun
dc.contributor.authorSaboungie, Marie-Louise
dc.contributor.authorSrikanth, Hariharan
dc.date.accessioned2018-04-19T14:15:22Z
dc.date.available2018-04-19T14:15:22Z
dc.date.issued2015-10-27
dc.date.updated2018-04-19T14:15:22Z
dc.description.abstractDisorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec646345
dc.identifier.issn2045-2322
dc.identifier.pmid26503506
dc.identifier.urihttps://hdl.handle.net/2445/121723
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/srep15054
dc.relation.ispartofScientific Reports, 2015, vol. 5, p. 15054
dc.relation.urihttps://doi.org/10.1038/srep15054
dc.rightscc-by (c) Khurshid, H. et al., 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)
dc.subject.classificationNanopartícules
dc.subject.classificationMètode de Montecarlo
dc.subject.classificationVidres de spin
dc.subject.otherNanoparticles
dc.subject.otherMonte Carlo method
dc.subject.otherSpin glasses
dc.titleSpin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
646345.pdf
Mida:
1.69 MB
Format:
Adobe Portable Document Format