Regularization-Based Machine Unlearning

dc.contributor.advisorStatuto, Nahuel
dc.contributor.advisorJacques Junior, Julio C. S.
dc.contributor.authorJutglar Puig, Arnau
dc.date.accessioned2025-09-17T07:42:45Z
dc.date.available2025-09-17T07:42:45Z
dc.date.issued2025-06-30
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2025. Tutor: Nahuel Statuto i Julio C. S. Jacques Juniorca
dc.description.abstractThis work treats the unlearning problem in machine learning (ML). This is the process to make ML models forget some subset of their training data. We restrict this study to deep learning architectures. We propose a metric to assess different unlearning algorithms. We design a new unlearning algorithm, Regret, and compare its performance with respect to Fine-tuning and our implementation of Fanchuan. We test them on four datasets and two different architectures. The experiments reveal that Regret outperforms Fine-tuning by a small margin. Moreover, our implementation of Fanchuan is the best-performing algorithm and surpasses the other two clearly.en
dc.format.extentx p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/223206
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Arnau Jutglar Puig, 2025
dc.rightscodi: GPL (c) Arnau Jutglar Puig, 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationAlgorismes computacionals
dc.subject.classificationProtecció de dades
dc.subject.classificationTreballs de fi de màster
dc.subject.otherMachine learning
dc.subject.otherComputer algorithms
dc.subject.otherData protection
dc.subject.otherMaster's thesis
dc.titleRegularization-Based Machine Unlearningca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
MFPDS_TFM_UNLEARNING-main.zip
Mida:
25.45 MB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
tfm_Jutglar_Puig_Arnau.pdf
Mida:
58.47 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria