Driving Magnetic Domains at the Nanoscale by Interfacial Strain-induced Proximity

dc.contributor.authorValmianski, I.
dc.contributor.authorFraile Rodríguez, Arantxa
dc.contributor.authorRodríguez Álvarez, Javier
dc.contributor.authorGarcía del Muro y Solans, Montserrat
dc.contributor.authorWolowiec, Christian
dc.contributor.authorKronast, Florian
dc.contributor.authorGabriel Ramirez, Juan
dc.contributor.authorSchuller, Ivan K.
dc.contributor.authorLabarta, Amílcar
dc.contributor.authorBatlle Gelabert, Xavier
dc.date.accessioned2024-01-24T18:03:34Z
dc.date.available2024-01-24T18:03:34Z
dc.date.issued2021-02-22
dc.date.updated2024-01-24T18:03:34Z
dc.description.abstractWe investigate the local nanoscale changes of the magnetic anisotropy of a Ni film subject to an inverse magnetostrictive effect by proximity to a V2O3 layer. Using temperature-dependent photoemission electron microscopy (PEEM) combined with X-ray magnetic circular dichroism (XMCD), direct images of the Ni spin alignment across the first-order structural phase transition (SPT) of V2O3 were obtained. We find an abrupt temperature-driven reorientation of the Ni magnetic domains across the SPT, which is associated with a large increase of the coercive field. Moreover, angular dependent ferromagnetic resonance (FMR) shows a remarkable change in the magnetic anisotropy of the Ni film across the SPT of V2O3. Micromagnetic simulations based on these results are in quantitative agreement with the PEEM data. Direct measurements of the lateral correlation length of the Ni domains from XMCD images show an increase of almost one order of magnitude at the SPT compared to room temperature, as well as a broad spatial distribution of the local transition temperatures, thus corroborating the phase coexistence of Ni anisotropies caused by the V2O3 SPT. We show that the rearrangement of the Ni domains is due to strain induced by the oxide layers' structural domains across the SPT. Our results illustrate the use of alternative hybrid systems to manipulate magnetic domains at the nanoscale, which allows for engineering of coercive fields for novel data storage architectures.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec708558
dc.identifier.issn2040-3364
dc.identifier.urihttps://hdl.handle.net/2445/206301
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1039/D0NR08253H
dc.relation.ispartofNanoscale, 2021, vol. 13, p. 4985-4994
dc.relation.urihttps://doi.org/10.1039/D0NR08253H
dc.rights(c) Ilya Valmianski et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)
dc.subject.classificationFotoemissió
dc.subject.classificationPropietats magnètiques
dc.subject.classificationMicroscòpia electrònica
dc.subject.otherPhotoemission
dc.subject.otherMagnetic properties
dc.subject.otherElectron microscopy
dc.titleDriving Magnetic Domains at the Nanoscale by Interfacial Strain-induced Proximity
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
236071.pdf
Mida:
1.51 MB
Format:
Adobe Portable Document Format