Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/215533
Active Learning approach to Gravitational Waves Classification Algorithms
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
This project explores the integration of Bayesian Optimization (BO) algorithms into a base machine learning model, specifically Convolutional Neural Networks (CNNs), for classifying gravitational waves among background noise. The primary objective is to evaluate whether optimizing hyperparameters using Bayesian Optimization enhances the performance of the base model.
For this purpose, a Kaggle [1] dataset that comprises real background noise (labeled 0) and simulated
gravitational wave signals with noise (labeled 1) is used. Data with real noise is collected from three detectors: LIGO Livingston, LIGO Hanford, and Virgo. Through data preprocessing and training, the models effectively classify testing data, predicting the presence of gravitational wave signals with a remarkable score, 83.61%. The BO model demonstrates comparable accuracy to the base model, but its performance improvement is not very significant (84.34%). However, it is worth noting that the BO model needs additional computational resources and time due to the iterations required for hyperparameter optimization, requiring an additional training on the entire dataset. For this reason, the BO model is less efficient in terms of resources compared to the base model in gravitational wave classification
Descripció
Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2024, Tutor: Tomás Andrade Weber
Matèries (anglès)
Citació
Col·leccions
Citació
CAPILLA MIRALLES, Àlex. Active Learning approach to Gravitational Waves Classification Algorithms. [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/215533]