Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Capilla, 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/215533

Active Learning approach to Gravitational Waves Classification Algorithms

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

This project explores the integration of Bayesian Optimization (BO) algorithms into a base machine learning model, specifically Convolutional Neural Networks (CNNs), for classifying gravitational waves among background noise. The primary objective is to evaluate whether optimizing hyperparameters using Bayesian Optimization enhances the performance of the base model. For this purpose, a Kaggle [1] dataset that comprises real background noise (labeled 0) and simulated gravitational wave signals with noise (labeled 1) is used. Data with real noise is collected from three detectors: LIGO Livingston, LIGO Hanford, and Virgo. Through data preprocessing and training, the models effectively classify testing data, predicting the presence of gravitational wave signals with a remarkable score, 83.61%. The BO model demonstrates comparable accuracy to the base model, but its performance improvement is not very significant (84.34%). However, it is worth noting that the BO model needs additional computational resources and time due to the iterations required for hyperparameter optimization, requiring an additional training on the entire dataset. For this reason, the BO model is less efficient in terms of resources compared to the base model in gravitational wave classification

Descripció

Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2024, Tutor: Tomás Andrade Weber

Citació

Citació

CAPILLA MIRALLES, Àlex. Active Learning approach to Gravitational Waves Classification Algorithms. [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/215533]

Exportar metadades

JSON - METS

Compartir registre