Carregant...
Fitxers
Tipus de document
Document de treballData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/11754
Bootstrapping pairs in Distance-Based Regression
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
La regressió basada en distàncies és un mètode de predicció que consisteix en dos passos: a partir de les distàncies entre observacions obtenim les variables latents, les quals passen a ser els regressors en un model lineal de mínims quadrats ordinaris. Les distàncies les calculem a partir dels predictors originals fent us d'una funció de dissimilaritats adequada. Donat que, en general, els regressors estan relacionats de manera no lineal amb la resposta, la seva selecció amb el test F usual no és possible. En aquest treball proposem una solució a aquest problema de selecció de predictors definint tests
estadístics generalitzats i adaptant un mètode de bootstrap no paramètric per a l'estimació dels p-valors. Incluim un exemple numèric amb dades de l'assegurança d'automòbils.
- Distance-based regression is a prediction method consisting of two steps: from distances between observations we obtain latent variables which, in turn, are the regressors in an ordinary least squares linear model. Distances are computed from actually observed predictors by means of a suitable dissimilarity function. Being in general nonlinearly related with the response their selection by the usual F tests is unavailable. In this paper we propose a solution to this predictor selection problem, by defining generalized test statistics and adapting a non-parametric bootstrap method to estimate their p-values. We include a numerical example with automobile insurance data.
- Distance-based regression is a prediction method consisting of two steps: from distances between observations we obtain latent variables which, in turn, are the regressors in an ordinary least squares linear model. Distances are computed from actually observed predictors by means of a suitable dissimilarity function. Being in general nonlinearly related with the response their selection by the usual F tests is unavailable. In this paper we propose a solution to this predictor selection problem, by defining generalized test statistics and adapting a non-parametric bootstrap method to estimate their p-values. We include a numerical example with automobile insurance data.
Matèries (anglès)
Citació
Citació
BOJ DEL VAL, Eva, CLARAMUNT BIELSA, M. mercè, FORTIANA GREGORI, Josep. Bootstrapping pairs in Distance-Based Regression. _Documents de treball (Facultat d'Economia i Empresa. Espai de Recerca en Economia)_. 2006. Vol. E06/154. [consulta: 30 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/11754]