When anatase nanoparticles become bulk-like: properties of realistic TiO2 nanoparticles in the 1-6 nm size range from all electron relativistic density functional theory based calculations

dc.contributor.authorLamiel Garcia, Josep Oriol
dc.contributor.authorKo, Kyoung Chul
dc.contributor.authorLee, Jin Yong
dc.contributor.authorBromley, Stefan Thomas
dc.contributor.authorIllas i Riera, Francesc
dc.date.accessioned2017-09-05T07:04:40Z
dc.date.available2018-04-01T22:01:22Z
dc.date.issued2017-04-01
dc.date.updated2017-09-05T07:04:40Z
dc.description.abstractAll electron relativistic density functional theory (DFT) based calculations using numerical atom-centered orbitals have been carried out to explore the relative stability, atomic, and electronic structure of a series of stoichiometric TiO2 anatase nanoparticles explicitly containing up to 1365 atoms as a function of size and morphology. The nanoparticles under scrutiny exhibit octahedral or truncated octahedral structures and span the 1-6 nm diameter size range. Initial structures were obtained using the Wulff construction, thus exhibiting the most stable (101) and (001) anatase surfaces. Final structures were obtained from geometry optimization with full relaxation of all structural parameters using both generalized gradient approximation (GGA) and hybrid density functionals. Results show that, for nanoparticles of a similar size, octahedral and truncated octahedral morphologies have comparable energetic stabilities. The electronic structure properties exhibit a clear trend converging:to the bulk values as the size of the nanoparticles increases but with a marked influence of the density functional employed. Our results suggest that electronic structure properties, and hence reactivity, for the largest anatase nanoparticles considered in this study will be similar to those exhibited by even larger mesoscale particles or by bulk systems. Finally, we present compelling evidence that anatase nanoparticles become effectively bulklike when reaching a size of similar to 20 nm diameter.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec673122
dc.identifier.issn1549-9618
dc.identifier.pmid28230983
dc.identifier.urihttps://hdl.handle.net/2445/114944
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acs.jctc.7b00085
dc.relation.ispartofJournal of Chemical Theory and Computation, 2017, vol. 13, num. 4, p. 1785-1793
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/676580/EU//NoMaD
dc.relation.urihttps://doi.org/10.1021/acs.jctc.7b00085
dc.rights(c) American Chemical Society , 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationDiòxid de titani
dc.subject.classificationNanopartícules
dc.subject.classificationTeoria del funcional de densitat
dc.subject.otherTitanium dioxide
dc.subject.otherNanoparticles
dc.subject.otherDensity functionals
dc.titleWhen anatase nanoparticles become bulk-like: properties of realistic TiO2 nanoparticles in the 1-6 nm size range from all electron relativistic density functional theory based calculations
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
673122.pdf
Mida:
1.38 MB
Format:
Adobe Portable Document Format