Interpretable surface-based detection of focal cortical dysplasias: a Multi-centre Epilepsy Lesion Detection study

dc.contributor.authorSpitzer, Hannah
dc.contributor.authorRipart, Mathilde
dc.contributor.authorWhitaker, Kirstie
dc.contributor.authorD'Arco, Felice
dc.contributor.authorMankad, Kshitij
dc.contributor.authorChen, Andrew A.
dc.contributor.authorNapolitano, Antonio
dc.contributor.authorDe Palma, Luca
dc.contributor.authorDe Benedictis, Alessandro
dc.contributor.authorFoldes, Stephen
dc.contributor.authorHumphreys, Zachary
dc.contributor.authorZhang, Kai
dc.contributor.authorHu, Wenhan
dc.contributor.authorMo, Jiajie
dc.contributor.authorLikeman, Marcus
dc.contributor.authorDavies, Shirin
dc.contributor.authorGüttler, Christopher
dc.contributor.authorLenge, Matteo
dc.contributor.authorCohen, Nathan T.
dc.contributor.authorTang, Yingying
dc.contributor.authorWang, Shan
dc.contributor.authorChari, Aswin
dc.contributor.authorTisdall, Martin
dc.contributor.authorBargalló Alabart, Núria
dc.contributor.authorConde Blanco, Estefanía
dc.contributor.authorPariente, Jose Carlos
dc.contributor.authorPascual-Diaz, Saül
dc.contributor.authorDelgado-Martínez, Ignacio
dc.contributor.authorPérez-Enríquez, Carmen
dc.contributor.authorLagorio, Ilaria
dc.contributor.authorAbela, Eugenio
dc.contributor.authorMullatti, Nandini
dc.contributor.authorO'Muircheartaigh, Jonathan
dc.contributor.authorVecchiato, Katy
dc.contributor.authorLiu, Yawu
dc.contributor.authorCaligiuri, Maria Eugenia
dc.contributor.authorSinclair, Ben
dc.contributor.authorVivash, Lucy
dc.contributor.authorWillard, Anna
dc.contributor.authorKandasamy, Jothy
dc.contributor.authorMcLellan, Ailsa
dc.contributor.authorSokol, Drahoslav
dc.contributor.authorSemmelroch, Mira
dc.contributor.authorKloster AG
dc.contributor.authorOpheim, Giske
dc.contributor.authorRibeiro, Letícia
dc.contributor.authorYasuda, Clarissa
dc.contributor.authorRossi-Espagnet, Camilla
dc.contributor.authorHamandi, Khalid
dc.contributor.authorTietze, Anna
dc.contributor.authorBarba, Carmen
dc.contributor.authorGuerrini, Renzo
dc.contributor.authorGaillard, William Davis
dc.contributor.authorYou, Xiaozhen
dc.contributor.authorWang, Irene
dc.contributor.authorGonzález Ortiz, Sofía
dc.contributor.authorSeverino, Mariasavina
dc.contributor.authorStriano, Pasquale
dc.contributor.authorTortora, Domenico
dc.contributor.authorKälviäinen, Reetta
dc.contributor.authorGambardella, Antonio
dc.contributor.authorLabate, Angelo
dc.contributor.authorDesmond, Patricia
dc.contributor.authorLui. Elaine
dc.contributor.authorO'Brien, Terence
dc.contributor.authorShetty, Jay
dc.contributor.authorJackson, Graeme
dc.contributor.authorDuncan, John S.
dc.contributor.authorWinston, Gavin P.
dc.contributor.authorPinborg, Lars H.
dc.contributor.authorCendes, Fernando
dc.contributor.authorTheis, Fabian J.
dc.contributor.authorShinohara, Russell T.
dc.contributor.authorCross, Judith Helen
dc.contributor.authorBaldeweg, Torsten
dc.contributor.authorAdler, Sophie
dc.contributor.authorWagstyl, Konrad
dc.date.accessioned2026-01-27T15:28:24Z
dc.date.available2026-01-27T15:28:24Z
dc.date.issued2022-11-21
dc.date.updated2026-01-27T15:28:24Z
dc.description.abstractOne outstanding challenge for machine learning in diagnostic biomedical imaging is algorithm interpretability. A key application is the identification of subtle epileptogenic focal cortical dysplasias (FCDs) from structural MRI. FCDs are difficult to visualize on structural MRI but are often amenable to surgical resection. We aimed to develop an open-source, interpretable, surface-based machine-learning algorithm to automatically identify FCDs on heterogeneous structural MRI data from epilepsy surgery centres worldwide. The Multi-centre Epilepsy Lesion Detection (MELD) Project collated and harmonized a retrospective MRI cohort of 1015 participants, 618 patients with focal FCD-related epilepsy and 397 controls, from 22 epilepsy centres worldwide. We created a neural network for FCD detection based on 33 surface-based features. The network was trained and cross-validated on 50% of the total cohort and tested on the remaining 50% as well as on 2 independent test sites. Multidimensional feature analysis and integrated gradient saliencies were used to interrogate network performance. Our pipeline outputs individual patient reports, which identify the location of predicted lesions, alongside their imaging features and relative saliency to the classifier. On a restricted 'gold-standard' subcohort of seizure-free patients with FCD type IIB who had T1 and fluid-attenuated inversion recovery MRI data, the MELD FCD surface-based algorithm had a sensitivity of 85%. Across the entire withheld test cohort the sensitivity was 59% and specificity was 54%. After including a border zone around lesions, to account for uncertainty around the borders of manually delineated lesion masks, the sensitivity was 67%. This multicentre, multinational study with open access protocols and code has developed a robust and interpretable machine-learning algorithm for automated detection of focal cortical dysplasias, giving physicians greater confidence in the identification of subtle MRI lesions in individuals with epilepsy.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec756754
dc.identifier.issn0006-8950
dc.identifier.pmid35953082
dc.identifier.urihttps://hdl.handle.net/2445/226260
dc.language.isoeng
dc.publisherOxford University Press
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1093/brain/awac224
dc.relation.ispartofBrain, 2022, vol. 145, num.11, p. 3859-3871
dc.relation.urihttps://doi.org/10.1093/brain/awac224
dc.rightscc-by (c) Spitzer, Hannah et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.classificationEpilèpsia
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationAlgorismes
dc.subject.otherEpilepsy
dc.subject.otherMachine learning
dc.subject.otherAlgorithms
dc.titleInterpretable surface-based detection of focal cortical dysplasias: a Multi-centre Epilepsy Lesion Detection study
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publisedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
887370.pdf
Mida:
769.67 KB
Format:
Adobe Portable Document Format