Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig

dc.contributor.authorRubanova, Yulia
dc.contributor.authorShi, Ruian
dc.contributor.authorHarrigan, Caitlin F.
dc.contributor.authorLi, Roujia
dc.contributor.authorWintersinger, Jeff
dc.contributor.authorSahin, Nil
dc.contributor.authorDeshwar, Amit G.
dc.contributor.authorPCAWG Evolution and Heterogeneity Working Group
dc.contributor.authorMorris, Quaid D.
dc.contributor.authorPCAWG Consortium
dc.contributor.authorDeu-Pons, Jordi
dc.contributor.authorFrigola, Joan
dc.contributor.authorGonzález-Pérez, Abel
dc.contributor.authorMuiños, Ferran
dc.contributor.authorMularoni, Loris
dc.contributor.authorPich, Oriol
dc.contributor.authorReyes-Salazar, Iker
dc.contributor.authorRubio-Perez, Carlota
dc.contributor.authorSabarinathan, Radhakrishnan
dc.contributor.authorTamborero, David
dc.contributor.authorAymerich Gregorio, Marta
dc.contributor.authorCampo Güerri, Elias
dc.contributor.authorLópez Guillermo, Armando
dc.contributor.authorGelpi Buchaca, Josep Lluís
dc.contributor.authorRabionet Janssen, Raquel
dc.date.accessioned2024-02-26T17:31:55Z
dc.date.available2024-02-26T17:31:55Z
dc.date.issued2020-02-05
dc.date.updated2024-02-26T17:31:56Z
dc.description.abstractThe type and genomic context of cancer mutations depend on their causes. These causes have been characterized using signatures that represent mutation types that co-occur in the same tumours. However, it remains unclear how mutation processes change during cancer evolution due to the lack of reliable methods to reconstruct evolutionary trajectories of mutational signature activity. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole-genome sequencing data from 2658 cancers across 38 tumour types, we present TrackSig, a new method that reconstructs these trajectories using optimal, joint segmentation and deconvolution of mutation type and allele frequencies from a single tumour sample. In simulations, we find TrackSig has a 3-5% activity reconstruction error, and 12% false detection rate. It outperforms an aggressive baseline in situations with branching evolution, CNA gain, and neutral mutations. Applied to data from 2658 tumours and 38 cancer types, TrackSig permits pan-cancer insight into evolutionary changes in mutational processes.
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec728363
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/2445/208103
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/ttps://doi.org/10.1038/s41467-020-14352-7
dc.relation.ispartofNature Communications, 2020, vol. 11, num.1, p. 1-12
dc.relation.urihttps://doi.org/ttps://doi.org/10.1038/s41467-020-14352-7
dc.rightscc-by (c) Rubanova, Y. et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Fonaments Clínics)
dc.subject.classificationTumors
dc.subject.classificationMutació (Biologia)
dc.subject.classificationGenomes
dc.subject.classificationCàncer
dc.subject.otherTumors
dc.subject.otherMutation (Biology)
dc.subject.otherGenomes
dc.subject.otherCancer
dc.titleReconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
255383.pdf
Mida:
3.99 MB
Format:
Adobe Portable Document Format