Gene expression changes throughout the life cycle allow a bacterial plant pathogen to persist in environmental habitats

dc.contributor.authorPedro Jové, Roger de
dc.contributor.authorCorral, Jordi
dc.contributor.authorRocafort, Mercedes
dc.contributor.authorPuigvert, Marina
dc.contributor.authorLatif Azam, Fàtima
dc.contributor.authorVandecaveye, Agustina
dc.contributor.authorMacho, Alberto P.
dc.contributor.authorBalsalobre Parra, Carlos
dc.contributor.authorColl, Núria S.
dc.contributor.authorOrellano, Elena
dc.contributor.authorValls i Matheu, Marc
dc.date.accessioned2024-02-27T14:37:06Z
dc.date.available2024-02-27T14:37:06Z
dc.date.issued2023-12-19
dc.date.updated2024-02-27T14:37:07Z
dc.description.abstractBacterial pathogens exhibit a remarkable ability to persist and thrive in diverse ecological niches. Understanding the mechanisms enabling their transition between habitats is crucial to control dissemination and potential disease outbreaks. Here, we use Ralstonia solanacearum, the causing agent of the bacterial wilt disease, as a model to investigate pathogen adaptation to water and soil, two environments that act as bacterial reservoirs, and compare this information with gene expression in planta. Gene expression in water resembled that observed during late xylem colonization, with an intriguing induction of the type 3 secretion system (T3SS). Alkaline pH and nutrient scarcity-conditions also encountered during late infection stages-were identified as the triggers for this T3SS induction. In the soil environment, R. solanacearum upregulated stress-responses and genes for the use of alternate carbon sources, such as phenylacetate catabolism and the glyoxylate cycle, and downregulated virulence-associated genes. We proved through gain- and loss-of-function experiments that genes associated with the oxidative stress response, such as the regulator OxyR and the catalase KatG, are key for bacterial survival in soil, as their deletion cause a decrease in culturability associated with a premature induction of the viable but non culturable state (VBNC). This work identifies essential factors necessary for R. solanacearum to complete its life cycle and is the first comprehensive gene expression analysis in all environments occupied by a bacterial plant pathogen, providing valuable insights into its biology and adaptation to unexplored habitats.
dc.format.extent26 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec740590
dc.identifier.issn1553-7366
dc.identifier.urihttps://hdl.handle.net/2445/208131
dc.language.isoeng
dc.publisherPublic Library of Science (PLoS)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1371/journal.ppat.1011888
dc.relation.ispartofPLoS Pathogens, 2023, vol. 19, num.12, p. 1-26
dc.relation.urihttps://doi.org/10.1371/journal.ppat.1011888
dc.rightscc-by (c) de Pedro-Jové, R et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Genètica, Microbiologia i Estadística)
dc.subject.classificationNínxol ecològic
dc.subject.classificationBacteris patògens
dc.subject.classificationExpressió gènica
dc.subject.otherNiche (Ecology)
dc.subject.otherPathogenic bacteria
dc.subject.otherGene expression
dc.titleGene expression changes throughout the life cycle allow a bacterial plant pathogen to persist in environmental habitats
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
835958.pdf
Mida:
3.24 MB
Format:
Adobe Portable Document Format