Abelian surfaces, Siegel modular forms, and the Paramodularity Conjecture

dc.contributor.advisorGuitart Morales, Xavier
dc.contributor.authorFlorit Zacarías, Enric
dc.date.accessioned2021-10-15T12:33:07Z
dc.date.available2021-10-15T12:33:07Z
dc.date.issued2021-06-28
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2021, Director: Xavier Guitart Moralesca
dc.description.abstract[en] This master’s thesis studies the modularity of elliptic curves over the rationals and two generalizations. The first is a theorem of Ribet based on Serre’s modularity conjecture, asserting that all abelian varieties of $\mathrm{G} \mathrm{L}_{2}$-type come from the Eichler-Shimura construction. The second is the Paramodularity Conjecture, which says that all abelian surfaces with trivial endomorphism ring have an associated Siegel paramodular form with coinciding $L$-function. We give background on abelian varieties, Galois representations and classical modular forms, all necessary to state modularity. Further, we explain the Eichler-Shimura construction and relation. We then study the basic theory of Siegel modular forms with respect to the paramodular group. The final chapter gives the statement of the Paramodularity Conjecture, along with a commentary of what a generalization to $\mathrm{GL}_{4}$-type abelian varieties could look like. An important part of this project is centered on explicit computation of Fourier-Siegel coefficients, and special care has been taken to present computational principles which are scattered across the literature. We also provide the first public implementation of the specialization method that was used to prove the first instance of the Paramodularity Conjecture.ca
dc.format.extent74 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/180602
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Enric Florit Zacarías, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada
dc.subject.classificationCorbes el·líptiquescat
dc.subject.classificationVarietats abelianescat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.classificationFormes modularsca
dc.subject.otherElliptic curveseng
dc.subject.otherAbelian varietieseng
dc.subject.otherMaster's theseseng
dc.subject.otherModular formseng
dc.titleAbelian surfaces, Siegel modular forms, and the Paramodularity Conjectureca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfm_florit_zacarias_enric.pdf
Mida:
807.2 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria