Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/202123
Equivariant cohomology and free $(\mathbb{Z} / 2)^n$-complexes
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] The field of transformation groups studies continuous actions of groups on topological spaces, in particular on CW-complexes. One of the fundamental questions that arises in this context is to determine those finite groups that can act effectively on a given topological space. A large amount of results are known about this issue, but it is not completely answered yet. Even in the case of abelian groups actions or elementary groups actions the question is highly nontrivial.
This project is devoted to a remarkable result regarding the description of those finite abelian groups that act freely on a CW-complex. The result states that if $X$ is a finite $C W$ complex and $(\mathbb{Z} / p)^n$ acts freely on $X$, with $p$ prime, then the sum of the lengths of the homology groups of $X$ with coefficients in $\mathbb{Z} / p$ is bounded below by $n+1$. Our study has been restricted to the case $p=2$, that was proved by Carlsson in 1983, with a modern approach based on cohomological methods.
Descripció
Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2022-2023. Director: Ignasi Mundet i Riera
Matèries (anglès)
Citació
Col·leccions
Citació
GARRIGA I PUIG, Jordi. Equivariant cohomology and free $(\mathbb{Z} / 2)^n$-complexes. [consulta: 20 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/202123]