Tuning transition metal carbide activity by surface metal alloying: a case study on CO2 capture and activation

dc.contributor.authorLópez Berbel, Martí
dc.contributor.authorBroderick, Luke
dc.contributor.authorCarey, John J.
dc.contributor.authorViñes Solana, Francesc
dc.contributor.authorNolan, Michael
dc.contributor.authorIllas i Riera, Francesc
dc.date.accessioned2020-01-28T14:26:24Z
dc.date.available2020-01-28T14:26:24Z
dc.date.issued2018-08-08
dc.date.updated2020-01-28T14:26:24Z
dc.description.abstractCO2 is one of the main actors in the greenhouse effect and its removal from the atmosphere is becoming an urgent need. Thus, CO2 capture and storage (CCS) and CO2 capture and usage (CCU) are intensively investigated technologies to decrease the concentration of atmospheric CO2. Both CCS and CCU require appropriate materials to adsorb/release and adsorb/activate CO2, respectively. Recently, it has been theoretically and experimentally shown that transition metal carbides (TMC) are able to capture, store, and activate CO2. To further improve the adsorption capacity of these materials, a deep understanding of the atomic level processes involved is essential. In the present work, we theoretically investigate the possible effects of surface metal doping of these TMCs by taking TiC as a textbook case and Cr, Hf, Mo, Nb, Ta, V, W, and Zr as dopants. Using periodic slab models with large supercells and state-of-the-art density functional theory based calculations we show that CO2 adsorption is enhanced by doping with metals down a group but worsened along the d series. Adsorption sites, dispersion, and coverage appear to play a minor, secondary constant effect. The dopant-induced adsorption enhancement is highly biased by the charge rearrangement at the surface. In all cases, CO2 activation is found but doping can shift the desorption temperature by up to 135 K.
dc.format.extent8 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec684493
dc.identifier.issn1463-9076
dc.identifier.urihttps://hdl.handle.net/2445/148823
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1039/C8CP03648A
dc.relation.ispartofPhysical Chemistry Chemical Physics, 2018, vol. 2018, num. 20, p. 22179-22186
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/604296/EU//BIOGO-FOR-PRODUCTION
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/676580/EU//NoMaD
dc.relation.urihttps://doi.org/10.1039/C8CP03648A
dc.rights(c) López Berbel, Martí et al., 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationMonòxid de carboni
dc.subject.classificationCarburs
dc.subject.classificationQuímica de superfícies
dc.subject.classificationMetalls de transició
dc.subject.otherCarbon monoxide
dc.subject.otherCarbides
dc.subject.otherSurface chemistry
dc.subject.otherTransition metals
dc.titleTuning transition metal carbide activity by surface metal alloying: a case study on CO2 capture and activation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
684493.pdf
Mida:
927.16 KB
Format:
Adobe Portable Document Format