Over 10% efficient wide bandgap CIGSe solar cells on transparent substrate with Na predeposition treatment

dc.contributor.authorSalem, Mohamed Ould
dc.contributor.authorFonoll Rubio, Robert
dc.contributor.authorGiraldo Muñoz, Sergio
dc.contributor.authorSánchez González, Yudania
dc.contributor.authorPlacidi, Marcel
dc.contributor.authorIzquierdo Roca, Victor
dc.contributor.authorMalerba, Claudia
dc.contributor.authorValentini, Matteo
dc.contributor.authorSylla, Diouldé
dc.contributor.authorThomere, Angelica
dc.contributor.authorAhmedou, Dah Ould
dc.contributor.authorSaucedo Silva, Edgardo
dc.contributor.authorPérez Rodríguez, Alejandro
dc.contributor.authorLi-Kao, Zacharie Jehl
dc.date.accessioned2021-03-02T12:00:04Z
dc.date.available2021-03-02T12:00:04Z
dc.date.issued2020-09-11
dc.date.updated2021-03-02T12:00:05Z
dc.description.abstractWith the recent rise of new photovoltaic applications, it has become necessary to develop specific optoelectronic properties for thin‐film technologies such as Cu(In,Ga)Se2 and to take advantage of their high degree of tunability. The feasibility of efficient wide bandgap absorbers on transparent conductive oxide substrates is, in that context, of critical importance. Using an original approach based on a predeposition sodium treatment, Cu(In,Ga)Se2 absorbers fabricated by sputtering and reactive annealing with a Ga to (Ga + In) content over 0.7 and an optical bandgap above 1.4 eV are deposited on transparent fluorine‐doped tin oxide films, with the insertion of an ultrathin MoSe2 layer preserving the contact's ohmicity. Different material characterizations are carried out, and a thorough Raman analysis of the absorber reveals that the sodium pretreatment significantly enhances the Ga incorporation into the chalcopyrite matrix, along with markedly improving the film's morphology and crystalline quality. This translates to a spectacular boost of the photovoltaic performance for the resulting solar cell as compared with a reference device without Na, specifically in the voltage and fill factor. Eventually, an efficiency exceeding 10% is obtained without antireflection coating, a record value bridging the gap with the state of the art on nontransparent substrates.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec706603
dc.identifier.issn2367-198X
dc.identifier.urihttps://hdl.handle.net/2445/174518
dc.language.isoeng
dc.publisherWiley-VCH
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1002/solr.202000284
dc.relation.ispartofSolar RRL, 2020, vol. 4, num. 11, p. 2000284
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/712949/EU//TECNIOspring PLUS
dc.relation.urihttps://doi.org/10.1002/solr.202000284
dc.rightscc-by-nc (c) Salem, Mohamed Ould, et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationCèl·lules solars
dc.subject.classificationFotoelectricitat
dc.subject.classificationPel·lícules fines
dc.subject.otherSolar cells
dc.subject.otherPhotoelectricity
dc.subject.otherThin films
dc.titleOver 10% efficient wide bandgap CIGSe solar cells on transparent substrate with Na predeposition treatment
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
706603.pdf
Mida:
1.34 MB
Format:
Adobe Portable Document Format