On the relative value of weak information of supervision for learning generative models: An empirical study

dc.contributor.authorHernández-González, Jerónimo
dc.contributor.authorPérez, Aritz
dc.date.accessioned2022-09-12T09:39:21Z
dc.date.available2022-09-12T09:39:21Z
dc.date.issued2022-11
dc.date.updated2022-09-12T09:39:21Z
dc.description.abstractWeakly supervised learning is aimed to learn predictive models from partially supervised data, an easy-to-collect alternative to the costly standard full supervision. During the last decade, the research community has striven to show that learning reliable models in specific weakly supervised problems is possible. We present an empirical study that analyzes the value of weak information of supervision throughout its entire spectrum, from none to full supervision. Its contribution is assessed under the realistic assumption that a small subset of fully supervised data is available. Particularized in the problem of learning with candidate sets, we adapt Cozman and Cohen [1] key study to learning from weakly supervised data. Standard learning techniques are used to infer generative models from this type of supervision with both synthetic and real data. Empirical results suggest that weakly labeled data is helpful in realistic scenarios, where fully labeled data is scarce, and its contribution is directly related to both the amount of information of supervision and how meaningful this information is.
dc.format.extent15 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec724731
dc.identifier.issn0888-613X
dc.identifier.urihttps://hdl.handle.net/2445/188884
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.ijar.2022.08.012
dc.relation.ispartofInternational Journal of Approximate Reasoning, 2022, vol. 150, p. 258-272
dc.relation.urihttps://doi.org/10.1016/j.ijar.2022.08.012
dc.rightscc-by(c) Jerónimo Hernández-González et.al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationSistemes classificadors (Intel·ligència artificial)
dc.subject.otherMachine learning
dc.subject.otherLearning classifier systems
dc.titleOn the relative value of weak information of supervision for learning generative models: An empirical study
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeinfo:eu-repo/semantics/article

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
724731.pdf
Mida:
936.28 KB
Format:
Adobe Portable Document Format