Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/172533
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLópez Vidrier, Julià-
dc.contributor.authorFrieiro Castro, Juan Luis-
dc.contributor.authorBlázquez, O. (Oriol)-
dc.contributor.authorYazicioglu, D.-
dc.contributor.authorGutsch, Sebastian-
dc.contributor.authorGonzález Flores, K. E.-
dc.contributor.authorZacharias, Margit-
dc.contributor.authorHernández Márquez, Sergi-
dc.contributor.authorGarrido Fernández, Blas-
dc.date.accessioned2020-12-03T13:36:02Z-
dc.date.issued2020-05-14-
dc.identifier.issn0003-6951-
dc.identifier.urihttp://hdl.handle.net/2445/172533-
dc.description.abstractThe increasing need for efficient memories with integrated functionalities in a single device has led the electronics community to investigate and develop different materials for resistive switching (RS) applications. Among these materials, the well-known Si nanocrystals (NCs) have demonstrated to exhibit RS properties, which add to the wealth of phenomena that have been studied on this model material platform. In this work, we present ZnO/Si NCs/p-Si resistive switching devices whose resistance state can be electrically read at 0 V under the application of low-power monochromatic illumination. The presented effect is studied in terms of the inner structural processes and electronic physics of the device. In particular, the creation of conductive filaments through the Si NC multilayers induces a low-resistance path for photogenerated carriers to get extracted from the device, whereas in the pristine state charge extraction is strongly quenched due to the insulating nature of the NC-embedding SiO2 matrix. In addition, spectral inspection of the generated photocurrent allowed unveiling the role of Si NCs in the reported effect. Overall, the hereby shown results pave the way to obtain memories whose RS state can be read under low-power conditions.-
dc.format.extent6 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Institute of Physics-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1063/5.0005069-
dc.relation.ispartofApplied Physics Letters, 2020, vol. 116, p. 193503-
dc.relation.urihttps://doi.org/10.1063/5.0005069-
dc.rightscc by (c) López Vidrier et al., 2020-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/-
dc.sourceArticles publicats en revistes (Física Aplicada)-
dc.subject.classificationNanocristalls-
dc.subject.classificationTeoria de la commutació-
dc.subject.classificationFotoelectricitat-
dc.subject.otherNanocrystals-
dc.subject.otherSwitching theory-
dc.subject.otherPhotoelectricity-
dc.titlePhotoelectrical reading in ZnO/Si NCs/p-Si resistive switching devices-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec700374-
dc.date.updated2020-12-03T13:36:02Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Institut de Nanociència i Nanotecnologia (IN2UB))
Articles publicats en revistes (Física Aplicada)
Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)

Files in This Item:
File Description SizeFormat 
700374.pdf1.24 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons