Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/191026
Title: ProGAN per a la generació de ressonància magnètica de mama
Author: Arranz Sánchez, Carlos
Director/Tutor: Díaz, Oliver
Keywords: Aprenentatge automàtic
Imatges mèdiques
Programari
Treballs de fi de grau
Imatges per ressonància magnètica
Xarxes neuronals (Informàtica)
Machine learning
Imaging systems in medicine
Computer software
Magnetic resonance imaging
Neural networks (Computer science)
Bachelor's theses
Issue Date: 12-Jun-2022
Abstract: [en] Currently, multiple machine learning models have been implemented to assist radiology staff in the decision-making process during the analysis of medical images for cancerous lesions, both benign and malignant. Despite this, such models mostly cannot be trained with sufficient images, due to the ethical and legal complications in obtaining the images. For this purpose, the objective of this study has been defined as the implementation of a deep learning model system, more specifically a Progressively Growing GAN, by means of which two-dimensional medical images of breast MRIs can be generated from a set of other two-dimensional medical images that were provided by the Consorci Corporació Sanitària Parc Taulí. Despite the lack of radiological knowledge and computational capacity, the results of the model can be seen as satisfactory, because the structure of the breasts is preserved, together with an approximation of the breast tissues. However, if these images are intended to be used in another project, the model should be trained on a machine with higher computational capacity by which the model can be trained for a longer time.
Note: Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Oliver Díaz
URI: https://hdl.handle.net/2445/191026
Appears in Collections:Programari - Treballs de l'alumnat
Treballs Finals de Grau (TFG) - Enginyeria Informàtica

Files in This Item:
File Description SizeFormat 
codi.zipCodi font35.25 MBzipView/Open
tfg_carlos_arranz_sanchez.pdfMemòria1.97 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons