Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) American Mathematical Society (AMS), 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/194107

Sharp quantitative stability for isoperimetric inequalities with homogeneous weights

Títol de la revista

ISSN de la revista

Títol del volum

Resum

We prove the sharp quantitative stability for a wide class of weighted isoperimetric inequalities. More precisely, we consider isoperimetric inequalities in convex cones with homogeneous weights. Inspired by the proof of such isoperimetric inequalities through the ABP method (see [CRS16]), we construct a new convex coupling (i.e., a map that is the gradient of a convex function) between a generic set $E$ and the minimizer of the inequality (as in Gromov's proof of the isoperimetric inequality). Even if this map does not come from optimal transport, and even if there is a weight in the inequality, we adapt the methods of [FMP10] and prove that if $E$ is almost optimal for the inequality then it is quantitatively close to a minimizer up to translations. Then, a delicate analysis is necessary to rule out the possibility of translations. As a step of our proof, we establish a sharp regularity result for restricted convex envelopes of a function that might be of independent interest.

Descripció

Citació

Citació

CINTI, Eleonora, GLAUDO, Federico, PRATELLI, Aldo, ROS, Xavier, SERRA, Joaquim. Sharp quantitative stability for isoperimetric inequalities with homogeneous weights. _Transactions of the American Mathematical Society_. 2022. Vol. 375, núm. 1509-1555. [consulta: 4 de desembre de 2025]. ISSN: 0002-9947. [Disponible a: https://hdl.handle.net/2445/194107]

Exportar metadades

JSON - METS

Compartir registre