Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/215131
Title: | Alternative Functionals Estimation Based on Index Models and Kernel Approach |
Author: | Dai, Lei |
Director/Tutor: | Bolancé Losilla, Catalina |
Keywords: | Funcions de Kernel Anàlisi de regressió Treballs de fi de màster Kernel functions Regression analysis Master's thesis |
Issue Date: | 2024 |
Abstract: | This work explores the utilization of double cross-validation methods for determining the optimal bandwidth in kernel regression using single index-models. Kernel regression is a non-parametric technique widely employed in various fields, particularly in smoothing noisy data. The bandwidth parameter plays a crucial role in kernel regression, controlling the smoothness of the estimated function. Selecting an appropriate bandwidth is essential for achieving accurate and robust model performance. Traditional approaches to band- width selection often rely on heuristic methods or fixed rules, which may not be optimal for all datasets (...) |
Note: | Treballs Finals del Màster de Ciències Actuarials i Financeres, Facultat d'Economia i Empresa, Universitat de Barcelona, Curs: 2023-2024, Tutoria: Catalina Bolancé Losilla |
URI: | https://hdl.handle.net/2445/215131 |
Appears in Collections: | Màster Oficial - Ciències Actuarials i Financeres (CAF) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TFM-CAF-Dai+Bolance_2024.pdf | 493.24 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License