Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/223206
Title: | Regularization-Based Machine Unlearning |
Author: | Jutglar Puig, Arnau |
Director/Tutor: | Statuto, Nahuel Jacques Junior, Julio C. S. |
Keywords: | Aprenentatge automàtic Algorismes computacionals Protecció de dades Treballs de fi de màster Machine learning Computer algorithms Data protection Master's thesis |
Issue Date: | 30-Jun-2025 |
Abstract: | This work treats the unlearning problem in machine learning (ML). This is the process to make ML models forget some subset of their training data. We restrict this study to deep learning architectures. We propose a metric to assess different unlearning algorithms. We design a new unlearning algorithm, Regret, and compare its performance with respect to Fine-tuning and our implementation of Fanchuan. We test them on four datasets and two different architectures. The experiments reveal that Regret outperforms Fine-tuning by a small margin. Moreover, our implementation of Fanchuan is the best-performing algorithm and surpasses the other two clearly. |
Note: | Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2025. Tutor: Nahuel Statuto i Julio C. S. Jacques Junior |
URI: | https://hdl.handle.net/2445/223206 |
Appears in Collections: | Màster Oficial - Fonaments de la Ciència de Dades Programari - Treballs de l'alumnat |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
MFPDS_TFM_UNLEARNING-main.zip | Codi font | 26.06 MB | zip | View/Open |
tfm_Jutglar_Puig_Arnau.pdf | Memòria | 59.87 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License