Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223206
Title: Regularization-Based Machine Unlearning
Author: Jutglar Puig, Arnau
Director/Tutor: Statuto, Nahuel
Jacques Junior, Julio C. S.
Keywords: Aprenentatge automàtic
Algorismes computacionals
Protecció de dades
Treballs de fi de màster
Machine learning
Computer algorithms
Data protection
Master's thesis
Issue Date: 30-Jun-2025
Abstract: This work treats the unlearning problem in machine learning (ML). This is the process to make ML models forget some subset of their training data. We restrict this study to deep learning architectures. We propose a metric to assess different unlearning algorithms. We design a new unlearning algorithm, Regret, and compare its performance with respect to Fine-tuning and our implementation of Fanchuan. We test them on four datasets and two different architectures. The experiments reveal that Regret outperforms Fine-tuning by a small margin. Moreover, our implementation of Fanchuan is the best-performing algorithm and surpasses the other two clearly.
Note: Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2025. Tutor: Nahuel Statuto i Julio C. S. Jacques Junior
URI: https://hdl.handle.net/2445/223206
Appears in Collections:Màster Oficial - Fonaments de la Ciència de Dades
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
MFPDS_TFM_UNLEARNING-main.zipCodi font26.06 MBzipView/Open
tfm_Jutglar_Puig_Arnau.pdfMemòria59.87 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons