Univalent functions. The Bieberbach conjecture

dc.contributor.advisorMassaneda Clares, Francesc Xavier
dc.contributor.authorRoig Sanchis, Anna
dc.date.accessioned2020-03-04T11:13:57Z
dc.date.available2020-03-04T11:13:57Z
dc.date.issued2019-06-19
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2019, Director: Francesc Xavier Massaneda Claresca
dc.description.abstract[en] In this work, we will study the theory holomorphic and univalent functions in proper simply connected domains of $\mathbb{C}$; in particular on the case where the domain is the unit disk. We will expose the most important results of the theory, and focus especially on one of its major problems: the Bierberbach conjecture (BC), stated in 1916 by Ludwig Bieberbach, and proved in 1984 by Louis de Branges, which claims: Bieberbach's Conjecture. The coefficients of each analytic and univalent function $f(z)=$ $z+\sum_{n=2}^{\infty} a_{n} z^{n}$ in the unit disk, with $f(0)=0$ and $f^{\prime}(0)=1$ satisfy: $$ \left|a_{n}\right| \leq n, \quad \text { for } \quad n=2,3, \cdots $$ Strict inequality holds for every n unless $f$ is a rotation of the Koebe function.ca
dc.format.extent60 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/151979
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Anna Roig Sanchis, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationFuncions univalentsca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationFuncions de variables complexesca
dc.subject.classificationTeoria geomètrica de funcionsca
dc.subject.otherUnivalent functionsen
dc.subject.otherBachelor's theses
dc.subject.otherFunctions of complex variablesen
dc.subject.otherGeometric function theoryen
dc.titleUnivalent functions. The Bieberbach conjectureca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
151979.pdf
Mida:
672.84 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria