An EEG based ‐ stochastic dynamical systems model of brain dynamics

dc.contributor.advisorCos Aguilera, Ignasi
dc.contributor.authorOsa Bañales, David de la
dc.date.accessioned2023-04-17T08:20:32Z
dc.date.available2023-04-17T08:20:32Z
dc.date.issued2022-06-13
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Ignasi Cos Aguilera i Josep Vives i Santa Eulàliaca
dc.description.abstract[en] How does the human brain work? How do different brain areas interact with each other when performing specific function? These questions have sharply increased in interest over the last decades, as the more it is known about human cognition and cognitive process distribution the more accurate some procedures will be, such as neuro-pathologies diagnosis, prediction of reaction to stimuli or influence of motivation/rewards on decisions. To analyse human cognition, neuroimaging techniques are commonly used, like Functional Magnetic Resonance Imaging (fMRI), Magnetoencephalography (MEG) or Electroencephalograms (EEGs). The aim of this project is to build a theoretical model, able to capture the neural dynamics of cortical interactions, which we referred to as effective connectivity. Neural data are high-density EEGs, recorded during a decision-making task (Cos et al. 2022). This approach overcomes the limitations that are presented when directly using correlation based connectivity metrics. The framework we created consists of a model-based whole-brain effective connectivity, based on the multivariate Ornstein-Uhlenbeck (MOU) process (MOU-EC). The goal of the model, once fitted, is to provide a directed connectivity estimate that reflects the dynamical state of the EEG signals and a method to generate signals that follow the connectivity.ca
dc.format.extent34 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/196843
dc.language.isoengca
dc.rightsmemòria: cc-nc-nd (c) David de la Osa Bañales, 2022
dc.rightscodi: GPL (c) David de la Osa Bañales, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationAnàlisi estocàsticaca
dc.subject.classificationElectroencefalografiaca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationCognicióca
dc.subject.classificationModels matemàticsca
dc.subject.otherStochastic analysisen
dc.subject.otherElectroencephalographyen
dc.subject.otherComputer softwareen
dc.subject.otherCognitionen
dc.subject.otherMathematical modelsen
dc.subject.otherBachelor's thesesen
dc.titleAn EEG based ‐ stochastic dynamical systems model of brain dynamicsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
3.91 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
codi.zip
Mida:
1.91 MB
Format:
ZIP file
Descripció:
Codi font