Carregant...
Miniatura

Tipus de document

Document de treball

Data de publicació

Llicència de publicació

cc-by-nc-nd, (c) Guelman et al., 201x
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/98449

Optimal personalized treatment rules for marketing interventions: A review of methods, a new proposal, and an insurance case study

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

In many important settings, subjects can show signi cant heterogeneity in response to a stimulus or treatment". For instance, a treatment that works for the overall population might be highly ine ective, or even harmful, for a subgroup of subjects with speci c characteristics. Similarly, a new treatment may not be better than an existing treatment in the overall population, but there is likely a subgroup of subjects who would bene t from it. The notion that "one size may not fit all" is becoming increasingly recognized in a wide variety of elds, ranging from economics to medicine. This has drawn signi cant attention to personalize the choice of treatment, so it is optimal for each individual. An optimal personalized treatment is the one that maximizes the probability of a desirable outcome. We call the task of learning the optimal personalized treatment "personalized treatment learning". From the statistical learning perspective, this problem imposes some challenges, primarily because the optimal treatment is unknown on a given training set. A number of statistical methods have been proposed recently to tackle this problem.

Citació

Citació

GUELMAN, Leo, GUILLÉN, Montserrat, PÉREZ MARÍN, Ana maría. Optimal personalized treatment rules for marketing interventions: A review of methods, a new proposal, and an insurance case study. _UB Riskcenter Working Paper Series_. 2014/06. [consulta: 24 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/98449]

Exportar metadades

JSON - METS

Compartir registre