Bioelectronic recordings of cardiomyocytes with accumulation mode electrolyte gated organic field effect transistors

dc.contributor.authorKyndiah, Adrica
dc.contributor.authorLeonardi, Francesca
dc.contributor.authorTarantino, Carolina
dc.contributor.authorCramer, Tobias
dc.contributor.authorMillán Solsona, Rubén
dc.contributor.authorGarreta, Elena
dc.contributor.authorMontserrat, Núria
dc.contributor.authorMas Torrent, Marta
dc.contributor.authorGomila Lluch, Gabriel
dc.date.accessioned2020-05-18T09:09:38Z
dc.date.available2021-11-06T06:10:18Z
dc.date.issued2019-11-06
dc.descriptionVersió postprint del document publicat a: https://doi.org/10.1016/j.bios.2019.111844ca
dc.description.abstractOrganic electronic materials offer an untapped potential for novel tools for low-invasive electrophysiological recording and stimulation devices. Such materials combine semiconducting properties with tailored surface chemistry, elastic mechanical properties and chemical stability in water. In this work, we investigate solution processed Electrolyte Gated Organic Field Effect Transistors (EGOFETs) based on a small molecule semiconductor. We demonstrate that EGOFETs based on a blend of soluble organic semiconductor 2,8-Difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES-ADT) combined with an insulating polymer show excellent sensitivity and long-term recording under electrophysiological applications. Our devices can stably record the extracellular potential of human pluripotent stem cell derived cardiomyocyte cells (hPSCs-CMs) for several weeks. In addition, cytotoxicity tests of pharmaceutical drugs, such as Norepinephrine and Verapamil was achieved with excellent sensitivity. This work demonstrates that organic transistors based on organic blends are excellent bioelectronics transducer for extracellular electrical recording of excitable cells and tissues thus providing a valid alternative to electrochemical transistors.ca
dc.format.extent8 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn0956-5663
dc.identifier.urihttps://hdl.handle.net/2445/160881
dc.language.isoengca
dc.publisherElsevier B.V.ca
dc.relation.ispartofBiosensors and Bioelectronics, 2020, vol. 150, p. 111844
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/640525/EU//REGMAMKIDca
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/712754/EU//BEST
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/813863/EU//BORGES
dc.relation.urihttps://doi.org/10.1016/j.bios.2019.111844
dc.rightscc by-nc-nd (c) Elsevier B.V., 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationBioelectrònica
dc.subject.classificationSemiconductors orgànics
dc.subject.classificationCèl·lules musculars
dc.subject.otherBioelectronics
dc.subject.otherOrganic semiconductors
dc.subject.otherMuscle cells
dc.titleBioelectronic recordings of cardiomyocytes with accumulation mode electrolyte gated organic field effect transistorsca
dc.typeinfo:eu-repo/semantics/articleca
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
L07_2020_Biosensors and Bioelectronics_150_111844_OA.pdf
Mida:
2.03 MB
Format:
Adobe Portable Document Format
Descripció: