Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/194583
Artificial intelligence to improve polyp detection and screening time in colon capsule endoscopy
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Colon Capsule Endoscopy (CCE) is a minimally invasive procedure which is increasingly being used as an alternative to conventional colonoscopy. Videos recorded by the capsule cameras are long and require one or more experts' time to review and identify polyps or other potential intestinal problems that can lead to major health issues. We developed and tested a multi-platform web application, AI-Tool, which embeds a Convolution Neural Network (CNN) to help CCE reviewers. With the help of artificial intelligence, AI-Tool is able to detect images with high probability of containing a polyp and prioritize them during the reviewing process. With the collaboration of 3 experts that reviewed 18 videos, we compared the classical linear review method using RAPID Reader Software v9.0 and the new software we present. Applying the new strategy, reviewing time was reduced by a factor of 6 and polyp detection sensitivity was increased from 81.08 to 87.80%.
Citació
Citació
GILABERT ROCA, Pere, VITRIÀ I MARCA, Jordi, LAIZ TRECEÑO, Pablo, MALAGELADA PRATS, Carolina, WATSON, Angus, WENZEK, Hagen, SEGUÍ MESQUIDA, Santi. Artificial intelligence to improve polyp detection and screening time in colon capsule endoscopy. _Frontiers in Medicine_. 2022. Vol. 9. [consulta: 24 de gener de 2026]. ISSN: 2296-858X. [Disponible a: https://hdl.handle.net/2445/194583]