Artificial intelligence to improve polyp detection and screening time in colon capsule endoscopy

dc.contributor.authorGilabert Roca, Pere
dc.contributor.authorVitrià i Marca, Jordi
dc.contributor.authorLaiz Treceño, Pablo
dc.contributor.authorMalagelada Prats, Carolina
dc.contributor.authorWatson, Angus
dc.contributor.authorWenzek, Hagen
dc.contributor.authorSeguí Mesquida, Santi
dc.date.accessioned2023-03-03T09:09:04Z
dc.date.available2023-03-03T09:09:04Z
dc.date.issued2022-10-13
dc.date.updated2023-03-03T09:09:04Z
dc.description.abstractColon Capsule Endoscopy (CCE) is a minimally invasive procedure which is increasingly being used as an alternative to conventional colonoscopy. Videos recorded by the capsule cameras are long and require one or more experts' time to review and identify polyps or other potential intestinal problems that can lead to major health issues. We developed and tested a multi-platform web application, AI-Tool, which embeds a Convolution Neural Network (CNN) to help CCE reviewers. With the help of artificial intelligence, AI-Tool is able to detect images with high probability of containing a polyp and prioritize them during the reviewing process. With the collaboration of 3 experts that reviewed 18 videos, we compared the classical linear review method using RAPID Reader Software v9.0 and the new software we present. Applying the new strategy, reviewing time was reduced by a factor of 6 and polyp detection sensitivity was increased from 81.08 to 87.80%.
dc.format.extent8 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec731068
dc.identifier.issn2296-858X
dc.identifier.urihttps://hdl.handle.net/2445/194583
dc.language.isoeng
dc.publisherFrontiers Media
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3389/fmed.2022.1000726
dc.relation.ispartofFrontiers in Medicine, 2022, vol. 9
dc.relation.urihttps://doi.org/10.3389/fmed.2022.1000726
dc.rightscc-by (c) Gilabert Roca, Pere et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationIntel·ligència artificial
dc.subject.classificationCàpsula endoscòpica
dc.subject.classificationMalalties del còlon
dc.subject.classificationPòlips (Patologia)
dc.subject.classificationDisseny de pàgines web
dc.subject.classificationXarxes neuronals convolucionals
dc.subject.classificationVisió per ordinador
dc.subject.classificationDiagnòstic per la imatge
dc.subject.otherArtificial intelligence
dc.subject.otherCapsule endoscopy
dc.subject.otherColonic diseases
dc.subject.otherPolyps (Pathology)
dc.subject.otherWeb site design
dc.subject.otherConvolutional neural networks
dc.subject.otherComputer vision
dc.subject.otherDiagnostic imaging
dc.titleArtificial intelligence to improve polyp detection and screening time in colon capsule endoscopy
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
731068.pdf
Mida:
1.48 MB
Format:
Adobe Portable Document Format