Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc by-nc-nd (c) Joan Hernández Garcı́a, 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/198241

Analytic capacity and singular integrals

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] In this project we introduce the notion of analytic capacity $(\gamma)$ as well as some of its essential properties. Using this concept we identify the family of removable compact subsets of $\mathbb{C}$, which are those such that, for any bounded holomorphic function defined on their complementary, they allow to extend analytically such function to the whole complex plane. From this point on, we discuss a possible geometric characterization for removable subsets, popularly known as the Painlevé problem. The previous task is done in terms of the Hausdorff dimension of these subsets, obtaining a full classification for values different than 1. This remaining case, usually referred to as the critical dimension associated to $\gamma$, has to be dealt with apart. It is at this point that we invoke the theory of singular integrals in order to study a particular family of these subsets: those contained in graphs of Lipschitz functions. We end our project by tackling this case, introduced by Arnaud Denjoy in the early 1900's, and providing a proof of a characterization theorem in this particular setting.

Descripció

Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2021-2022. Director: Joaquim Ortega Cerdà i Laura Prat Baiget

Citació

Citació

HERNÁNDEZ GARCÍA, Joan. Analytic capacity and singular integrals. [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/198241]

Exportar metadades

JSON - METS

Compartir registre