Analytic capacity and singular integrals

dc.contributor.advisorOrtega Cerdà, Joaquim
dc.contributor.advisorPrat Baiget, Laura
dc.contributor.authorHernández García, Joan
dc.date.accessioned2023-05-19T07:46:32Z
dc.date.available2023-05-19T07:46:32Z
dc.date.issued2022-06-27
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2021-2022. Director: Joaquim Ortega Cerdà i Laura Prat Baigetca
dc.description.abstract[en] In this project we introduce the notion of analytic capacity $(\gamma)$ as well as some of its essential properties. Using this concept we identify the family of removable compact subsets of $\mathbb{C}$, which are those such that, for any bounded holomorphic function defined on their complementary, they allow to extend analytically such function to the whole complex plane. From this point on, we discuss a possible geometric characterization for removable subsets, popularly known as the Painlevé problem. The previous task is done in terms of the Hausdorff dimension of these subsets, obtaining a full classification for values different than 1. This remaining case, usually referred to as the critical dimension associated to $\gamma$, has to be dealt with apart. It is at this point that we invoke the theory of singular integrals in order to study a particular family of these subsets: those contained in graphs of Lipschitz functions. We end our project by tackling this case, introduced by Arnaud Denjoy in the early 1900's, and providing a proof of a characterization theorem in this particular setting.ca
dc.format.extent86 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/198241
dc.language.isoengca
dc.rightscc by-nc-nd (c) Joan Hernández Garcı́a, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada
dc.subject.classificationFuncions de variables complexescat
dc.subject.classificationRepresentacions integralscat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.otherFunctions of complex variableseng
dc.subject.otherIntegral representationseng
dc.subject.otherMaster's theseseng
dc.titleAnalytic capacity and singular integralsca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfm_hernandez_garcia_joan.pdf
Mida:
1023.52 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria