A Multiscale Study of Phosphorylcholine Driven Cellular Phenotypic Targeting

dc.contributor.authorAcosta Gutiérrez, Silvia
dc.contributor.authorMatias, Diana
dc.contributor.authorAvila Olias, Milagros
dc.contributor.authorGouveia, Virginia M.
dc.contributor.authorScarpa, Edoardo
dc.contributor.authorForth, Joe
dc.contributor.authorContini, Claudia
dc.contributor.authorDuro Castano, Aroa
dc.contributor.authorRizzello, Loris
dc.contributor.authorBattaglia, Giuseppe
dc.date.accessioned2022-06-23T06:29:11Z
dc.date.available2022-06-23T06:29:11Z
dc.date.issued2022-04-15
dc.date.updated2022-06-22T09:39:45Z
dc.description.abstractAbstractPhenotypic targeting requires the ability of the drug delivery system to discriminate over cell populations expressing a particular receptor combination. Such selectivity control can be achieved using multiplexed-multivalent carriers often decorated with multiple ligands. Here, we demonstrate that the promiscuity of a single ligand can be leveraged to create multiplexed-multivalent carriers achieving phenotypic targeting. We show how the cellular uptake of poly(2-methacryloyloxyethyl phosphorylcholine)-poly(2- (diisopropylamino)ethyl methacrylate) (PMPC-PDPA) polymersomes varies depending on the receptor expression among different cells. We investigate the PMPC-PDPA polymersome insertion at the single chain/receptor level using all-atom molecular modelling. We propose a theoretical statistical mechanics-based model for polymersome-cell association that explicitly considers the interaction of the polymersome with the cell glycocalyx shedding light on its effect on the polymersome binding. We validate our model experimentally and show that the binding energy is a non-linear function, allowing us to tune interaction by varying the radius and degrees of polymerisation. Finally, we show that PMPC-PDPA polymersomes can be used to target monocytes in vivo due to their promiscuous interaction with SRB1, CD36 and CD81.
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idimarina6545564
dc.identifier.issn2374-7951
dc.identifier.urihttps://hdl.handle.net/2445/186962
dc.language.isoeng
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1021/acscentsci.2c00146
dc.relation.ispartofACS Central Science, 2022
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/769798/EU//CheSSTaG
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/850936/EU//PANDORA
dc.relation.urihttps://doi.org/10.1021/acscentsci.2c00146
dc.rightscc by-nc-nd (c) Acosta Gutiérrez, Silvia et al, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))
dc.subject.classificationBioquímica
dc.subject.classificationGlúcids
dc.subject.otherBiochemistry
dc.subject.otherGlucides
dc.titleA Multiscale Study of Phosphorylcholine Driven Cellular Phenotypic Targeting
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
2022_ACSCenSci_Multiscale_BattagliaG.pdf
Mida:
8.27 MB
Format:
Adobe Portable Document Format