A class-conditional approach to learning with noisy labels

dc.contributor.advisorRadeva, Petia
dc.contributor.authorCatalán Tatjer, Albert
dc.date.accessioned2022-06-29T06:28:20Z
dc.date.available2022-06-29T06:28:20Z
dc.date.issued2022-01-24
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Petia Radevaca
dc.description.abstract[en] The main topic of this work is Learning with Noisy Labels (LNL). It is the field of Machine Learning concerned with training Neural Networks with noisy datasets. In particular, we have studied DivideMix, a method for LNL in the context of Computer Vision. After an extensive research we have discovered that it is unaware of the underlying class-conditional behaviour which consequently produces class imbalances. In this work, we present two class-conditional approaches to DivideMix. With this intent, we study approximate Baye- sian Inference to quantify per-class uncertainty and leverage this extra information to improve the MixMatch step. In addition, we propose a class-aware policy that improves co-divide. Finally, improving DivideMix’s predictive accuracy by up to 0.39% in certain noise settings.ca
dc.format.extent65 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/187143
dc.language.isoengca
dc.rightsmemòria: cc-nc-nd (c) Albert Catalán Tatjer, 2022
dc.rightscodi: MIT (c) Albert Catalán Tatjer, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights.urihttps://opensource.org/licenses/MIT*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationXarxes neuronals (Informàtica)ca
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationVisió per ordinadorca
dc.subject.classificationProcessament digital d'imatgesca
dc.subject.otherNeural networks (Computer science)en
dc.subject.otherMachine learningen
dc.subject.otherComputer softwareen
dc.subject.otherComputer visionen
dc.subject.otherDigital image processingen
dc.subject.otherBachelor's thesesen
dc.titleA class-conditional approach to learning with noisy labelsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codi.zip
Mida:
516.98 KB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
tfg_catalan_tatjer_albert.pdf
Mida:
3.12 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria