A lower bound in Nehari's theorem on the polydisc

dc.contributor.authorOrtega Cerdà, Joaquim
dc.contributor.authorSeip, Kristian
dc.date.accessioned2013-04-08T06:32:46Z
dc.date.available2013-04-08T06:32:46Z
dc.date.issued2012-10
dc.date.updated2013-04-08T06:32:46Z
dc.description.abstractBy theorems of Ferguson and Lacey ($d=2$) and Lacey and Terwilleger ($d>2$), Nehari's theorem is known to hold on the polydisc $\D^d$ for $d>1$, i.e., if $H_\psi$ is a bounded Hankel form on $H^2(\D^d)$ with analytic symbol $\psi$, then there is a function $\varphi$ in $L^\infty(\T^d)$ such that $\psi$ is the Riesz projection of $\varphi$. A method proposed in Helson's last paper is used to show that the constant $C_d$ in the estimate $\|\varphi\|_\infty\le C_d \|H_\psi\|$ grows at least exponentially with $d$; it follows that there is no analogue of Nehari's theorem on the infinite-dimensional polydisc.
dc.format.extent4 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec600313
dc.identifier.issn0021-7670
dc.identifier.urihttps://hdl.handle.net/2445/34463
dc.language.isoeng
dc.publisherSpringer
dc.relation.isformatofVersió postprint del document publicat a: http://dx.doi.org/10.1007/s11854-012-0038-y
dc.relation.ispartofJournal d'Analyse Mathematique, 2012, vol. 118, num. 1, p. 339-342
dc.relation.urihttp://dx.doi.org/10.1007/s11854-012-0038-y
dc.rights(c) The Hebrew University of Jerusalem, 2012
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationTeoria d'operadors
dc.subject.classificationAnàlisi de Fourier
dc.subject.classificationAnàlisi harmònica
dc.subject.classificationFuncions de diverses variables complexes
dc.subject.otherOperator theory
dc.subject.otherFourier analysis
dc.subject.otherHarmonic analysis
dc.subject.otherFunctions of several complex variables
dc.titleA lower bound in Nehari's theorem on the polydisc
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
600313.pdf
Mida:
201.61 KB
Format:
Adobe Portable Document Format