Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Bueno del Pozo, Daniel, et al., 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/217911

Machine learning data augmentation strategy for electron energy loss spectroscopy: generative adversarial networks

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Recent advances in machine learning (ML) have highlighted a novel challenge concerning the quality and quantity of data required to effectively train algorithms in supervised ML procedures. This article introduces a data augmentation (DA) strategy for electron energy loss spectroscopy (EELS) data, employing generative adversarial networks (GANs). We present an innovative approach, called the data augmentation generative adversarial network (DAG), which facilitates data generation from a very limited number of spectra, around 100. Throughout this study, we explore the optimal configuration for GANs to produce realistic spectra. Notably, our DAG generates realistic spectra, and the spectra produced by the generator are successfully used in real-world applications to train classifiers based on artificial neural networks (ANNs) and support vector machines (SVMs) that have been successful in classifying experimental EEL spectra.

Citació

Citació

BUENO DEL POZO, Daniel, YEDRA, Lluis, KEPAPTSOGLOU, Demie, RAMASSE, Quentin, PEIRÓ MARTÍNEZ, Francisca, ESTRADÉ ALBIOL, Sònia. Machine learning data augmentation strategy for electron energy loss spectroscopy: generative adversarial networks. _Microscopy and Microanalysis_. 2024. Vol. 30, núm. 278-293. [consulta: 7 de febrer de 2026]. ISSN: 1431-9276. [Disponible a: https://hdl.handle.net/2445/217911]

Exportar metadades

JSON - METS

Compartir registre