Machine learning data augmentation strategy for electron energy loss spectroscopy: generative adversarial networks
| dc.contributor.author | Bueno del Pozo, Daniel | |
| dc.contributor.author | Yedra, Lluis | |
| dc.contributor.author | Kepaptsoglou, Demie | |
| dc.contributor.author | Ramasse, Quentin | |
| dc.contributor.author | Peiró Martínez, Francisca | |
| dc.contributor.author | Estradé Albiol, Sònia | |
| dc.date.accessioned | 2025-01-23T17:35:41Z | |
| dc.date.available | 2025-01-23T17:35:41Z | |
| dc.date.issued | 2024-04-29 | |
| dc.date.updated | 2025-01-23T17:35:41Z | |
| dc.description.abstract | Recent advances in machine learning (ML) have highlighted a novel challenge concerning the quality and quantity of data required to effectively train algorithms in supervised ML procedures. This article introduces a data augmentation (DA) strategy for electron energy loss spectroscopy (EELS) data, employing generative adversarial networks (GANs). We present an innovative approach, called the data augmentation generative adversarial network (DAG), which facilitates data generation from a very limited number of spectra, around 100. Throughout this study, we explore the optimal configuration for GANs to produce realistic spectra. Notably, our DAG generates realistic spectra, and the spectra produced by the generator are successfully used in real-world applications to train classifiers based on artificial neural networks (ANNs) and support vector machines (SVMs) that have been successful in classifying experimental EEL spectra. | |
| dc.format.extent | 16 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 753355 | |
| dc.identifier.issn | 1431-9276 | |
| dc.identifier.uri | https://hdl.handle.net/2445/217911 | |
| dc.language.iso | eng | |
| dc.publisher | Cambridge University Press (CUP) | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1093/mam/ozae014 | |
| dc.relation.ispartof | Microscopy and Microanalysis, 2024, vol. 30, p. 278-293 | |
| dc.relation.uri | https://doi.org/10.1093/mam/ozae014 | |
| dc.rights | cc-by (c) Bueno del Pozo, Daniel, et al., 2024 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
| dc.source | Articles publicats en revistes (Enginyeria Electrònica i Biomèdica) | |
| dc.subject.classification | Aprenentatge automàtic | |
| dc.subject.classification | Espectroscòpia de pèrdua d'energia d'electrons | |
| dc.subject.other | Machine learning | |
| dc.subject.other | Electron energy loss spectroscopy | |
| dc.title | Machine learning data augmentation strategy for electron energy loss spectroscopy: generative adversarial networks | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1