Machine learning data augmentation strategy for electron energy loss spectroscopy: generative adversarial networks

dc.contributor.authorBueno del Pozo, Daniel
dc.contributor.authorYedra, Lluis
dc.contributor.authorKepaptsoglou, Demie
dc.contributor.authorRamasse, Quentin
dc.contributor.authorPeiró Martínez, Francisca
dc.contributor.authorEstradé Albiol, Sònia
dc.date.accessioned2025-01-23T17:35:41Z
dc.date.available2025-01-23T17:35:41Z
dc.date.issued2024-04-29
dc.date.updated2025-01-23T17:35:41Z
dc.description.abstractRecent advances in machine learning (ML) have highlighted a novel challenge concerning the quality and quantity of data required to effectively train algorithms in supervised ML procedures. This article introduces a data augmentation (DA) strategy for electron energy loss spectroscopy (EELS) data, employing generative adversarial networks (GANs). We present an innovative approach, called the data augmentation generative adversarial network (DAG), which facilitates data generation from a very limited number of spectra, around 100. Throughout this study, we explore the optimal configuration for GANs to produce realistic spectra. Notably, our DAG generates realistic spectra, and the spectra produced by the generator are successfully used in real-world applications to train classifiers based on artificial neural networks (ANNs) and support vector machines (SVMs) that have been successful in classifying experimental EEL spectra.
dc.format.extent16 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec753355
dc.identifier.issn1431-9276
dc.identifier.urihttps://hdl.handle.net/2445/217911
dc.language.isoeng
dc.publisherCambridge University Press (CUP)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1093/mam/ozae014
dc.relation.ispartofMicroscopy and Microanalysis, 2024, vol. 30, p. 278-293
dc.relation.urihttps://doi.org/10.1093/mam/ozae014
dc.rightscc-by (c) Bueno del Pozo, Daniel, et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationEspectroscòpia de pèrdua d'energia d'electrons
dc.subject.otherMachine learning
dc.subject.otherElectron energy loss spectroscopy
dc.titleMachine learning data augmentation strategy for electron energy loss spectroscopy: generative adversarial networks
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
875500.pdf
Mida:
5.16 MB
Format:
Adobe Portable Document Format