The Effect of tensile stress on the conformational free energy landscape of disulfide bonds

dc.contributor.authorAnjukandi, Padmesh
dc.contributor.authorDopieralski, Przemyslaw
dc.contributor.authorRibas Ariño, Jordi
dc.contributor.authorMarx, Dominik
dc.date.accessioned2018-09-12T17:19:00Z
dc.date.available2018-09-12T17:19:00Z
dc.date.issued2014-10-06
dc.date.updated2018-09-12T17:19:00Z
dc.description.abstractDisulfide bridges are no longer considered to merely stabilize protein structure, but are increasingly recognized to play a functional role in many regulatory biomolecular processes. Recent studies have uncovered that the redox activity of native disulfides depends on their C-C-S-S dihedrals, and . Moreover, the interplay of chemical reactivity and mechanical stress of disulfide switches has been recently elucidated using force-clamp spectroscopy and computer simulation. The and angles have been found to change from conformations that are open to nucleophilic attack to sterically hindered, so-called closed states upon exerting tensile stress. In view of the growing evidence of the importance of C-C-S-S dihedrals in tuning the reactivity of disulfides, here we present a systematic study of the conformational diversity of disulfides as a function of tensile stress. With the help of force-clamp metadynamics simulations, we show that tensile stress brings about a large stabilization of the closed conformers, thereby giving rise to drastic changes in the conformational free energy landscape of disulfides. Statistical analysis shows that native TDi, DO and interchain Ig protein disulfides prefer open conformations, whereas the intrachain disulfide bridges in Ig proteins favor closed conformations. Correlating mechanical stress with the distance between the two -carbons of the disulfide moiety reveals that the strain of intrachain Ig protein disulfides corresponds to a mechanical activation of about 100 pN. Such mechanical activation leads to a severalfold increase of the rate of the elementary redox reaction step. All these findings constitute a step forward towards achieving a full understanding of functional disulfides.
dc.format.extent7 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec647618
dc.identifier.issn1932-6203
dc.identifier.pmid25286308
dc.identifier.urihttps://hdl.handle.net/2445/124497
dc.language.isoeng
dc.publisherPublic Library of Science (PLoS)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1371/journal.pone.0108812
dc.relation.ispartofPLoS One, 2014, vol. 9, num. 10, p. 1-7
dc.relation.urihttps://doi.org/10.1371/journal.pone.0108812
dc.rightscc-by (c) Anjukandi, Padmesh et al., 2014
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationEnllaços químics
dc.subject.classificationReacció d'oxidació-reducció
dc.subject.otherChemical bonds
dc.subject.otherOxidation-reduction reaction
dc.titleThe Effect of tensile stress on the conformational free energy landscape of disulfide bonds
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
647618.pdf
Mida:
867.52 KB
Format:
Adobe Portable Document Format