Knowledge Retrieval from PubMed Abstracts and Electronic Medical Records with the Multiple Sclerosis Ontology

dc.contributor.authorMalhotra, Ashutosh
dc.contributor.authorGündel, Michaela
dc.contributor.authorRajput, Abdul Mateen
dc.contributor.authorMevissen, Heinz-Theodor
dc.contributor.authorSaiz Hinarejos, Albert
dc.contributor.authorPastor Durán, Xavier
dc.contributor.authorLozano Rubí, Raimundo
dc.contributor.authorMartínez Lapiscina, Elena H.
dc.contributor.authorZubizarreta, Irati
dc.contributor.authorMueller, Bernd
dc.contributor.authorKotelnikova, Ekaterina
dc.contributor.authorToldo, Luca
dc.contributor.authorHofmann Apitius, Martin
dc.contributor.authorVilloslada, Pablo
dc.date.accessioned2015-05-11T07:23:57Z
dc.date.available2015-05-11T07:23:57Z
dc.date.issued2015-02-09
dc.date.updated2015-05-11T07:23:57Z
dc.description.abstractBackground In order to retrieve useful information from scientific literature and electronic medical records (EMR) we developed an ontology specific for Multiple Sclerosis (MS). Methods The MS Ontology was created using scientific literature and expert review under the Protégé OWL environment. We developed a dictionary with semantic synonyms and translations to different languages for mining EMR. The MS Ontology was integrated with other ontologies and dictionaries (diseases/comorbidities, gene/protein, pathways, drug) into the text-mining tool SCAIView. We analyzed the EMRs from 624 patients with MS using the MS ontology dictionary in order to identify drug usage and comorbidities in MS. Testing competency questions and functional evaluation using F statistics further validated the usefulness of MS ontology. Results Validation of the lexicalized ontology by means of named entity recognition-based methods showed an adequate performance (F score = 0.73). The MS Ontology retrieved 80% of the genes associated with MS from scientific abstracts and identified additional pathways targeted by approved disease-modifying drugs (e.g. apoptosis pathways associated with mitoxantrone, rituximab and fingolimod). The analysis of the EMR from patients with MS identified current usage of disease modifying drugs and symptomatic therapy as well as comorbidities, which are in agreement with recent reports. Conclusion The MS Ontology provides a semantic framework that is able to automatically extract information from both scientific literature and EMR from patients with MS, revealing new pathogenesis insights as well as new clinical information.
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec649283
dc.identifier.issn1932-6203
dc.identifier.pmid25665127
dc.identifier.urihttps://hdl.handle.net/2445/65484
dc.language.isoeng
dc.publisherPublic Library of Science (PLoS)
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1371/journal.pone.0116718
dc.relation.ispartofPLoS One, 2015, vol. 10, num. 2
dc.relation.urihttp://dx.doi.org/10.1371/journal.pone.0116718
dc.rightscc-by (c) Malhotra, A. et al., 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Medicina)
dc.subject.classificationMEDLINE
dc.subject.classificationRecursos electrònics en xarxa
dc.subject.classificationEsclerosi múltiple
dc.subject.classificationInformació científica i tècnica
dc.subject.otherMEDLINE
dc.subject.otherComputer network resources
dc.subject.otherMultiple sclerosis
dc.subject.otherScience and technical information
dc.titleKnowledge Retrieval from PubMed Abstracts and Electronic Medical Records with the Multiple Sclerosis Ontology
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
649283.pdf
Mida:
1.99 MB
Format:
Adobe Portable Document Format