Using Machine Learning techniques in phenomenological studies on flavour physics

dc.contributor.authorAlda, J.
dc.contributor.authorGuasch Inglada, Jaume
dc.contributor.authorPeñaranda Rivas, Siannah
dc.date.accessioned2022-10-05T14:48:44Z
dc.date.available2022-10-05T14:48:44Z
dc.date.issued2022-07-19
dc.date.updated2022-10-05T14:48:45Z
dc.description.abstractAn updated analysis of New Physics violating Lepton Flavour Universality, by using the Standard Model Effective Field Lagrangian with semileptonic dimension six operators at Λ = 1 TeV is presented. We perform a global fit, by discussing the relevance of the mixing in the first generation. We use for the first time in this context a Montecarlo analysis to extract the confidence intervals and correlations between observables. Our results show that machine learning, made jointly with the SHAP values, constitute a suitable strategy to use in this kind of analysis.
dc.format.extent42 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec724267
dc.identifier.issn1126-6708
dc.identifier.urihttps://hdl.handle.net/2445/189626
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/JHEP07(2022)115
dc.relation.ispartofJournal of High Energy Physics, 2022, vol. 2022, num. 115, p. 1-42
dc.relation.urihttps://doi.org/10.1007/JHEP07(2022)115
dc.rightscc-by (c) Alda, J. et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)
dc.subject.classificationFenomenologia (Física)
dc.subject.classificationFísica de partícules
dc.subject.classificationEquacions de Lagrange
dc.subject.otherPhenomenological theory (Physics)
dc.subject.otherParticle physics
dc.subject.otherLagrange equations
dc.titleUsing Machine Learning techniques in phenomenological studies on flavour physics
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
724267.pdf
Mida:
3.28 MB
Format:
Adobe Portable Document Format