Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/186660
Sumsets and monomial projections of veronese varieties
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] The main purpose of this paper is to study the so-called sumsets problem. This problem is naturally seen from the point of view of Additive Combinatorics, yet we approach it using Algebraic Geometry. This work is divided into three chapters.
The first chapter is devoted to Commutative Algebra. We first define basic concepts, such as graded modules or exact sequences, which will be present throughout the whole article, and then we introduce the concept of the Hilbert function of a graded module. The most important result of the chapter is the fact that this function, for sufficiently large integers, is a polynomial, which we prove by means of the Hilbert-Serre theorem and also Hilbert’s syzygy theorem. Knowing the coefficients of this polynomial is, in general, a very difficult problem.
In the second chapter, we link the previous one with Algebraic Geometry. We define the Hilbert function of a projective variety and we calculate it in some simple cases. Next, we study three invariants of projective varieties and introduce the Veronese varieties, which are key in this work. The monomial projections of these varieties will be fundamental to solving the sumsets problem.
Finally, in the last chapter, we show that the cardinality of the sumsets can be modeled by the Hilbert function of a suitable monomial projection of a Veronese variety, which proves that this cardinality asymptotically becomes a polynomial.
Descripció
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Rosa M. Miró-Roig
Matèries (anglès)
Citació
Col·leccions
Citació
LLENAS I SEGURA, Sixte oriol. Sumsets and monomial projections of veronese varieties. [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/186660]