The Hilbert-Kunz function of some quadratic quotients of the Rees algebra

dc.contributor.authorStrazzanti, Francesco
dc.contributor.authorZarzuela, Santiago
dc.date.accessioned2023-02-13T19:02:28Z
dc.date.available2023-02-13T19:02:28Z
dc.date.issued2022-04
dc.date.updated2023-02-13T19:02:28Z
dc.description.abstractGiven a commutative local ring $(R, \mathfrak{m})$ and an ideal $I$ of $R$, a family of quotients of the Rees algebra $R[I t]$ has been recently studied as a unified approach to the Nagata's idealization and the amalgamated duplication and as a way to construct interesting examples, especially integral domains. When $R$ is noetherian of prime characteristic, we compute the HilbertKunz function of the members of this family and, provided that either $I$ is $\mathfrak{m}$-primary or $R$ is regular and F-finite, we also find their Hilbert-Kunz multiplicity. Some consequences and examples are explored.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec713909
dc.identifier.issn0002-9939
dc.identifier.urihttps://hdl.handle.net/2445/193549
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1090/proc/15819
dc.relation.ispartofProceedings of the American Mathematical Society, 2022, vol. 150, num. 4, p. 1493-1503
dc.relation.urihttps://doi.org/10.1090/proc/15819
dc.rightscc-by-nc-nd (c) American Mathematical Society (AMS), 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAnells locals
dc.subject.classificationÀlgebra commutativa
dc.subject.classificationÀlgebra homològica
dc.subject.otherLocal rings
dc.subject.otherCommutative algebra
dc.subject.otherHomological algebra
dc.titleThe Hilbert-Kunz function of some quadratic quotients of the Rees algebra
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
713909.pdf
Mida:
234.11 KB
Format:
Adobe Portable Document Format