Integrating genetic, neuropsychological and neuroimaging data to model early-onset obsessive compulsive disorder severity

dc.contributor.authorMas Herrero, Sergi
dc.contributor.authorGassó Astorga, Patricia
dc.contributor.authorMorer Liñán, Astrid
dc.contributor.authorCalvo, Anna
dc.contributor.authorBargalló Alabart, Núria​
dc.contributor.authorLafuente, Amàlia, 1952-2022
dc.contributor.authorLázaro García, Luisa
dc.date.accessioned2016-12-09T11:24:47Z
dc.date.available2016-12-09T11:24:47Z
dc.date.issued2016-04-12
dc.date.updated2016-12-09T11:24:52Z
dc.description.abstractWe propose an integrative approach that combines structural magnetic resonance imaging data (MRI), diffusion tensor imaging data (DTI), neuropsychological data, and genetic data to predict early-onset obsessive compulsive disorder (OCD) severity. From a cohort of 87 patients, 56 with complete information were used in the present analysis. First, we performed a multivariate genetic association analysis of OCD severity with 266 genetic polymorphisms. This association analysis was used to select and prioritize the SNPs that would be included in the model. Second, we split the sample into a training set (N = 38) and a validation set (N = 18). Third, entropy-based measures of information gain were used for feature selection with the training subset. Fourth, the selected features were fed into two supervised methods of class prediction based on machine learning, using the leave-one-out procedure with the train- ing set. Finally, the resulting model was validated with the validation set. Nine variables were used for the creation of the OCD severity predictor, including six genetic polymorphisms and three variables from the neuropsychological data. The developed model classified child and adolescent patients with OCD by disease severity with an accuracy of 0.90 in the testing set and 0.70 in the validation sample. Above its clinical applicability, the combination of particular neuropsychological, neuroimaging, and genetic characteristics could enhance our under- standing of the neurobiological basis of the disorder.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec659761
dc.identifier.issn1932-6203
dc.identifier.pmid27093171
dc.identifier.urihttps://hdl.handle.net/2445/104559
dc.language.isoeng
dc.publisherPublic Library of Science (PLoS)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1371/journal.pone.0153846
dc.relation.ispartofPLoS One, 2016, vol. 11, num. 4, p. e0153846
dc.relation.urihttps://doi.org/10.1371/journal.pone.0153846
dc.rightscc-by (c) Mas Herrero et al., 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Fonaments Clínics)
dc.subject.classificationNeurosi obsessiva
dc.subject.classificationNeuropsicologia
dc.subject.classificationGenètica humana
dc.subject.classificationRessonància magnètica
dc.subject.classificationDiagnòstic per la imatge
dc.subject.classificationFarmacogenètica
dc.subject.otherObsessive-compulsive disorder
dc.subject.otherNeuropsychology
dc.subject.otherHuman genetics
dc.subject.otherMagnetic resonance
dc.subject.otherDiagnostic imaging
dc.subject.otherPharmacogenetics
dc.titleIntegrating genetic, neuropsychological and neuroimaging data to model early-onset obsessive compulsive disorder severity
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
659761.pdf
Mida:
535.81 KB
Format:
Adobe Portable Document Format