Semi-purity of tempered Deligne cohomology

dc.contributor.authorBurgos Gil, José I.cat
dc.date.accessioned2011-03-08T09:49:16Z-
dc.date.available2011-03-08T09:49:16Z-
dc.date.issued2008-
dc.description.abstractIn this paper we define the formal and tempered Deligne cohomology groups, that are obtained by applying the Deligne complex functor to the complexes of formal differential forms and tempered currents respectively. We then prove the existence of a duality between them, a vanishing theorem for the former and a semipurity property for the latter. The motivation of these results comes from the study of covariant arithmetic Chow groups. The semipurity property of tempered Deligne cohomology implies, in particular, that several definitions of covariant arithmetic Chow groups agree for projective arithmetic varieties.eng
dc.format.extent24 p.-
dc.format.mimetypeapplication/pdf-
dc.identifier.idgrec555915-
dc.identifier.issn0010-0757-
dc.identifier.urihttps://hdl.handle.net/2445/16924-
dc.language.isoengeng
dc.publisherUniversitat de Barcelonacat
dc.relation.isformatofReproducció del document publicat a: http://www.collectanea.ub.edu/index.php/Collectanea/article/view/5157/6332cat
dc.relation.ispartofCollectanea Mathematica, 2008, vol. 59, num. 1, p. 79-102cat
dc.rights(c) Universitat de Barcelona, 2008-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationGeometria algebraicacat
dc.subject.otherAlgebraic geometryeng
dc.titleSemi-purity of tempered Deligne cohomologyeng
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
555915.pdf
Mida:
295.75 KB
Format:
Adobe Portable Document Format