Carregant...
Tipus de document
ArticleData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/178832
Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Lack of a dedicated integrated pipeline for neoantigen discovery in mice hinders cancer immunotherapy research. Novel sequential approaches through recurrent neural networks can improve the accuracy of T-cell epitope binding affinity predictions in mice, and a simplified variant selection process can reduce operational requirements. We have developed a web server tool (NAP-CNB) for a full and automatic pipeline based on recurrent neural networks, to predict putative neoantigens from tumoral RNA sequencing reads. The developed software can estimate H-2 peptide ligands, with an AUC comparable or superior to state-of-the-art methods, directly from tumor samples. As a proof-of-concept, we used the B16 melanoma model to test the system's predictive capabilities, and we report its putative neoantigens. NAP-CNB web server is freely available at http://biocomp.cnb.csic.es/NeoantigensApp/ with scripts and datasets accessible through the download section.
Matèries
Matèries (anglès)
Citació
Citació
WERT CARVAJAL, Carlos, SÁNCHEZ GARCÍA, Rubén, MACÍAS, José r, SANZ PAMPLONA, Rebeca, MÉNDEZ PÉREZ, Almudena, ALEMANY BONASTRE, Ramon, VEIGA, Esteban, SORZANO, Carlos óscar s., MUÑOZ BARRUTIA, Arrate. Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool. _Scientific Reports_. 2021. Vol. 11, núm. 10780. [consulta: 1 de febrer de 2026]. [Disponible a: https://hdl.handle.net/2445/178832]