Generalization transitions in Hidden-Layer neural networks for third-order feature discrimination

dc.contributor.authorRomeo Val, Augustcat
dc.date.accessioned2011-07-07T12:50:25Z
dc.date.available2011-07-07T12:50:25Z
dc.date.issued1993
dc.description.abstractStochastic learning processes for a specific feature detector are studied. This technique is applied to nonsmooth multilayer neural networks requested to perform a discrimination task of order 3 based on the ssT-block¿ssC-block problem. Our system proves to be capable of achieving perfect generalization, after presenting finite numbers of examples, by undergoing a phase transition. The corresponding annealed theory, which involves the Ising model under external field, shows good agreement with Monte Carlo simulations.eng
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec73475
dc.identifier.issn1063-651X
dc.identifier.urihttps://hdl.handle.net/2445/18685
dc.language.isoengeng
dc.publisherThe American Physical Societyeng
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1103/PhysRevE.47.2162cat
dc.relation.ispartofPhysical Review E, 1993, vol. 47, núm. 3, p. 2162-2171
dc.relation.urihttp://dx.doi.org/10.1103/PhysRevE.47.2162
dc.rights(c) The American Physical Society, 1993
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Cognició, Desenvolupament i Psicologia de l'Educació)
dc.subject.classificationFísica estadísticacat
dc.subject.classificationProcessos estocàsticscat
dc.subject.classificationBiofísicacat
dc.subject.otherStatistical physicseng
dc.subject.otherStochastic processeseng
dc.subject.otherBiophysicseng
dc.titleGeneralization transitions in Hidden-Layer neural networks for third-order feature discriminationeng
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
73475.pdf
Mida:
1.47 MB
Format:
Adobe Portable Document Format