Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc by-nc-nd (c) Pablo García Arias, 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/202090

The optimal transport problem and its applications

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] The objective of this project is to present the base of Optimal Transport Theory and some of its applications. The Optimal Transport Problem was first studied by Monge in the 18th century, and later reformulated by Kantorovich during the 20th century, being this second version the main object of study. One of the key results relating Monge’s formulation is Brenier’s theorem, which we will prove and apply to prove the Isoperimetric inequality and the Sobolev inequality. By employing a different method we will prove another classical result, the Brunn-Minkowski inequality. This essay concludes with some conditions for the two problems to have the same optimal value. The other main topic studied during this work are the Wasserstein spaces. They are a family of probability measures spaces where we use Optimal transport to construct a metric, the Wasserstein distance. A key result is that it metrizes the weak topology of these spaces.

Descripció

Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2022-2023. Director: Joaquim Ortega Cerdà

Citació

Citació

GARCÍA ARIAS, Pablo. The optimal transport problem and its applications. [consulta: 10 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/202090]

Exportar metadades

JSON - METS

Compartir registre