Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/202090
The optimal transport problem and its applications
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] The objective of this project is to present the base of Optimal Transport Theory and some of its applications. The Optimal Transport Problem was first studied by Monge in the 18th century, and later reformulated by Kantorovich during the 20th century, being this second version the main object of study. One of the key results relating Monge’s formulation is Brenier’s theorem, which we will prove and apply to prove the Isoperimetric inequality and the Sobolev inequality.
By employing a different method we will prove another classical result, the Brunn-Minkowski inequality. This essay concludes with some conditions for the two problems to have the same optimal value. The other main topic studied during this work are the Wasserstein spaces. They are a family of probability measures spaces where we use Optimal transport to construct a metric, the Wasserstein distance. A key result is that it metrizes the weak topology of these spaces.
Descripció
Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2022-2023. Director: Joaquim Ortega Cerdà
Matèries (anglès)
Citació
Col·leccions
Citació
GARCÍA ARIAS, Pablo. The optimal transport problem and its applications. [consulta: 10 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/202090]