The optimal transport problem and its applications

dc.contributor.advisorOrtega Cerdà, Joaquim
dc.contributor.authorGarcía Arias, Pablo
dc.date.accessioned2023-09-21T08:17:21Z
dc.date.available2023-09-21T08:17:21Z
dc.date.issued2023-06-28
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2022-2023. Director: Joaquim Ortega Cerdàca
dc.description.abstract[en] The objective of this project is to present the base of Optimal Transport Theory and some of its applications. The Optimal Transport Problem was first studied by Monge in the 18th century, and later reformulated by Kantorovich during the 20th century, being this second version the main object of study. One of the key results relating Monge’s formulation is Brenier’s theorem, which we will prove and apply to prove the Isoperimetric inequality and the Sobolev inequality. By employing a different method we will prove another classical result, the Brunn-Minkowski inequality. This essay concludes with some conditions for the two problems to have the same optimal value. The other main topic studied during this work are the Wasserstein spaces. They are a family of probability measures spaces where we use Optimal transport to construct a metric, the Wasserstein distance. A key result is that it metrizes the weak topology of these spaces.ca
dc.format.extent68 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/202090
dc.language.isoengca
dc.rightscc by-nc-nd (c) Pablo García Arias, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada
dc.subject.classificationGeometria de Riemanncat
dc.subject.classificationDesigualtats (Matemàtica)cat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.otherRiemannian geometryeng
dc.subject.otherInequalities (Mathematics)eng
dc.subject.otherMaster's thesiseng
dc.titleThe optimal transport problem and its applicationsca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfm_garcía_arias_pablo.pdf
Mida:
442.86 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria