On the probability of reaching a barrier in an Erlang(2) risk process.

dc.contributor.authorClaramunt Bielsa, M. Mercè
dc.contributor.authorMármol, Maite
dc.contributor.authorLacayo, Ramón
dc.date.accessioned2017-05-18T10:24:33Z
dc.date.available2017-05-18T10:24:33Z
dc.date.issued2005
dc.date.updated2017-05-18T10:24:33Z
dc.description.abstractIn this paper the process of aggregated claims in a non-life insurance portfolio as defined in the classical model of risk theory is modified. The Compound Poisson process is replaced with a more general renewal risk process with interoccurrence times of Erlangian type. We focus our analysis on the probability that the process of surplus reaches a certain level before ruin occurs, χ(u,b). Our main contribution is the generalization obtained in the computation of χ(u,b) for the case of interoccurrence time between claims distributed as Erlang(2, β) and the individual claim amount as Erlang (n, γ).
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec527480
dc.identifier.issn1696-2281
dc.identifier.urihttps://hdl.handle.net/2445/111228
dc.language.isoeng
dc.publisherInstitut d'Estadística de Catalunya
dc.relation.isformatofReproducció del document publicat a: http://www.raco.cat/index.php/SORT/article/view/28886
dc.relation.ispartofSort (Statistics and Operations Research Transactions), 2005, vol. 29, num. 2, p. 235-248
dc.rightscc-by-nc-nd (c) Claramunt Bielsa, M. Mercè et al., 2005
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Matemàtica Econòmica, Financera i Actuarial)
dc.subject.classificationRisc (Economia)
dc.subject.classificationEquacions diferencials
dc.subject.classificationAssegurances
dc.subject.otherRisk
dc.subject.otherDifferential equations
dc.subject.otherInsurance
dc.titleOn the probability of reaching a barrier in an Erlang(2) risk process.
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
527480.pdf
Mida:
126.32 KB
Format:
Adobe Portable Document Format