Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis

dc.contributor.authorMosquera Orgueira, Adrián
dc.contributor.authorPérez Encinas, Manuel
dc.contributor.authorHernández Sánchez, Alberto
dc.contributor.authorGonzález Martínez, Teresa
dc.contributor.authorArellano Rodrigo, Eduardo
dc.contributor.authorMartínez Elicegui, Javier
dc.contributor.authorVillaverde Ramiro, Ángela
dc.contributor.authorRaya, José María
dc.contributor.authorAyala, Rosa
dc.contributor.authorFerrer Marín, Francisca
dc.contributor.authorFox, María Laura
dc.contributor.authorVelez, Patricia
dc.contributor.authorMora, Elvira
dc.contributor.authorXicoy, Blanca
dc.contributor.authorMata Vázquez, María Isabel
dc.contributor.authorGarcía Fortes, María
dc.contributor.authorAngona, Anna
dc.contributor.authorCuevas, Beatriz
dc.contributor.authorSenín, Alicia
dc.contributor.authorRamírez Payer, Ángel
dc.contributor.authorRamírez Bajo, María José
dc.contributor.authorPérez López, Raúl
dc.contributor.authorGonzález de Villambrosía, Sonia
dc.contributor.authorMartínez Valverde, Clara
dc.contributor.authorGómez Casares, María Teresa
dc.contributor.authorGarcía Hernández, Carmen
dc.contributor.authorGasior, Mercedes
dc.contributor.authorBellosillo Paricio, Beatriz
dc.contributor.authorSteegmann, Juan Luis
dc.contributor.authorÁlvarez Larrán, Alberto
dc.contributor.authorHernández Rivas, Jesús María
dc.contributor.authorHernández Boluda, Juan Carlos
dc.contributor.authorThe Spanish MPN Group (GEMFIN).
dc.date.accessioned2023-02-06T08:58:20Z
dc.date.available2023-02-06T08:58:20Z
dc.date.issued2022-12-20
dc.date.updated2023-02-01T16:17:50Z
dc.description.abstractMyelofibrosis (MF) is a myeloproliferative neoplasm (MPN) with heterogeneous clinical course. Allogeneic hematopoietic cell transplantation remains the only curative therapy, but its morbidity and mortality require careful candidate selection. Therefore, accurate disease risk prognostication is critical for treatment decision-making. We obtained registry data from patients diagnosed with MF in 60 Spanish institutions (N = 1386). These were randomly divided into a training set (80%) and a test set (20%). A machine learning (ML) technique (random forest) was used to model overall survival (OS) and leukemia-free survival (LFS) in the training set, and the results were validated in the test set. We derived the AIPSS-MF (Artificial Intelligence Prognostic Scoring System for Myelofibrosis) model, which was based on 8 clinical variables at diagnosis and achieved high accuracy in predicting OS (training set c-index, 0.750; test set c-index, 0.744) and LFS (training set c-index, 0.697; test set c-index, 0.703). No improvement was obtained with the inclusion of MPN driver mutations in the model. We were unable to adequately assess the potential benefit of including adverse cytogenetics or high-risk mutations due to the lack of these data in many patients. AIPSS-MF was superior to the IPSS regardless of MF subtype and age range and outperformed the MYSEC-PM in patients with secondary MF. In conclusion, we have developed a prediction model based exclusively on clinical variables that provides individualized prognostic estimates in patients with primary and secondary MF. The use of AIPSS-MF in combination with predictive models that incorporate genetic information may improve disease risk stratification.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn2572-924
dc.identifier.pmid36570691
dc.identifier.urihttps://hdl.handle.net/2445/193126
dc.language.isoeng
dc.publisherOvid Technologies (Wolters Kluwer Health)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1097/HS9.0000000000000818
dc.relation.ispartofHemaSphere, 2023, vol. 7, num. 1, p. e818
dc.relation.urihttps://doi.org/10.1097/HS9.0000000000000818
dc.rightscc by (c) Mosquera Orgueira, Adrián et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationMielofibrosi
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationPronòstic mèdic
dc.subject.otherMyelofibrosis
dc.subject.otherMachine learning
dc.subject.otherPrognosis
dc.titleMachine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
Machine_Learning_Improves_Risk_Stratification_in.3.pdf
Mida:
3.48 MB
Format:
Adobe Portable Document Format