Engineering excitonically coupled dimers in an artificial protein for light harvesting via computational modeling

dc.contributor.authorCurti, Mariano
dc.contributor.authorMaffeis, Valentin
dc.contributor.authorTeixeira Alves Duarte, Luís Gustavo
dc.contributor.authorShareef, Saeed
dc.contributor.authorHallado, Luisa Xiomara
dc.contributor.authorCurutchet Barat, Carles E.
dc.contributor.authorRomero, Elisabet
dc.date.accessioned2023-12-20T11:44:15Z
dc.date.available2024-01-30T06:10:32Z
dc.date.issued2023-01-30
dc.date.updated2023-12-20T11:44:15Z
dc.description.abstractIn photosynthesis, pigment-protein complexes achieve outstanding photoinduced charge separation efficiencies through a set of strategies in which excited states delocalization over multiple pigments ('excitons') and charge-transfer states play key roles. These concepts, and their implementation in bioinspired artificial systems, are attracting increasing attention due to the vast potential that could be tapped by realizing efficient photochemical reactions. In particular, de novo designed proteins provide a diverse structural toolbox that can be used to manipulate the geometric and electronic properties of bound chromophore molecules. However, achieving excitonic and charge-transfer states requires closely spaced chromophores, a non-trivial aspect since a strong binding with the protein matrix needs to be maintained. Here, we show how a general-purpose artificial protein can be optimized via molecular dynamics simulations to improve its binding capacity of a chlorophyll derivative, achieving complexes in which chromophores form two closely spaced and strongly interacting dimers. Based on spectroscopy results and computational modeling, we demonstrate each dimer is excitonically coupled, and propose they display signatures of charge-transfer state mixing. This work could open new avenues for the rational design of chromophore-protein complexes with advanced functionalities.
dc.format.extent1 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec733925
dc.identifier.issn0961-8368
dc.identifier.urihttps://hdl.handle.net/2445/204945
dc.language.isoeng
dc.publisherWiley
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1002/pro.4579
dc.relation.ispartofProtein Science, 2023, vol. 32, num.3, p. e4579
dc.relation.urihttps://doi.org/10.1002/pro.4579
dc.rights(c) The Protein Society, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Farmàcia, Tecnologia Farmacèutica i Fisicoquímica)
dc.subject.classificationPigments (Biologia)
dc.subject.classificationProteïnes
dc.subject.otherPigments (Biology)
dc.subject.otherProteins
dc.titleEngineering excitonically coupled dimers in an artificial protein for light harvesting via computational modeling
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
260907.pdf
Mida:
1.31 MB
Format:
Adobe Portable Document Format